KM Steele, A Rozumalski, MH Schwartz (2015) “Muscle synergies and complexity of neuromuscular control during gait in cerebral palsy.” Developmental Medicine & Child Neurology

WalkDMC decreased with GMFCS level among individuals with cerebral palsy.

Journal article accepted in Developmental Medicine & Child Neurology:

Kat Steele partnered with Mike Schwartz and Adam Rozumalski of Gillette Children’s Specialty Healthcare to complete one of the largest studies to date of individuals with cerebral palsy. They quantified how neuromuscular control is altered among individuals with cerebral palsy and how this altered control can contribute to impaired function.

WalkDMC decreased with GMFCS level among individuals with cerebral palsy.

Abstract: Individuals with cerebral palsy (CP) have impaired movement due to a brain injury near birth. Understanding how neuromuscular control is altered in CP can provide insight into pathological movement. We sought to determine if individuals with CP demonstrate reduced complexity of neuromuscular control during gait compared with unimpaired individuals and if changes in control are related to functional ability. Muscle synergies during gait were retrospectively analyzed for 633 individuals (age range 3.9–70y): 549 with CP (hemiplegia, n=122; diplegia, n=266; triplegia, n=73; quadriplegia, n=88) and 84 unimpaired individuals. Synergies were calculated using non-negative matrix factorization from surface electromyography collected during previous clinical gait analyses. Synergy complexity during gait was compared with diagnosis subtype, functional ability, and clinical examination measures. Fewer synergies were required to describe muscle activity during gait in individuals with CP compared with unimpaired individuals. Changes in synergies were related to functional impairment and clinical examination measures including selective motor control, strength, and spasticity. InterpretationIndividuals with CP use a simplified control strategy during gait compared with unimpaired individuals. These results were similar to synergies during walking among adult stroke survivors, suggesting similar neuromuscular control strategies between these clinical populations. PDF

Also, make sure you look at the commentary from Diane Damiano. She provides perspective about the utility of synergies for evaluating neuromuscular control in children with cerebral palsy and future challenges.

KM Steele, A Rozumalski, MH Schwartz, “Altered muscle synergies during gait in cerebral palsy are not due to altered kinematics or kinetics.” International Society of Biomechanics (Glasgow, UK) July 15, 2015.

International Society of Biomechanics LogoKat Steele presented our recent work on altered synergies during gait in cerebral palsy and the impact of altered gait patterns at the International Society of Biomechanics conference on July 15, 2015 in Glasgow, Ireland.

MH Schwartz, A Rozumalski, KM Steele, “Dynamic motor control during walking predicts treatment outcomes in cerebral palsy.” International Society of Biomechanics (Glasgow, UK) July 13, 2015.

International Society of Biomechanics LogoKat Steele & Mike Schwartz presented their research demonstrating that synergies measured from EMG are predictive of post-operative outcomes after botulinum toxin injections, selective dorsal rhizotomy, and multi-level orthopaedic surgery. These results will support future research to determine if synergies can be used clinically to quantify patient-specific changes in control and guide treatment planning.

International Society of Biomechanics conference on July 13, 2015 in Glasgow, Ireland.

Finalist for David Winter Award

Dr. Steele has been selected as one of five finalists for the David Winter's biomechanics book.David Winter Young Investigator Award at the International Society of Biomechanics. She will be presenting in the award session on Wednesday, July 15th at the conference in Glasgow. She will be presenting the results of her research on:

Altered muscle synergies during gait in cerebral palsy are not due to altered kinematics or kinetics.