Kat Steele presents at Gait & Clinical Movement Analysis Society Conference and receives Kevin Granata Young Investigator Award:
How do muscle contributions to support and propulsion change during crouch gait
Grand Rapids, MI (May 12, 2012)
Kat Steele presents at Gait & Clinical Movement Analysis Society Conference and receives Kevin Granata Young Investigator Award:
How do muscle contributions to support and propulsion change during crouch gait
Grand Rapids, MI (May 12, 2012)
Journal article accepted in Gait & Posture:
Compressive tibiofemoral forces during crouch gait
Crouch gait, a common walking pattern in individuals with cerebral palsy, is characterized by excessive flexion of the hip and knee. Many subjects with crouch gait experience knee pain, perhaps because of elevated muscle forces and joint loading. The goal of this study was to examine how muscle forces and compressive tibiofemoral force change with the increasing knee flexion associated with crouch gait. Muscle forces and tibiofemoral force were estimated for three unimpaired children and nine children with cerebral palsy who walked with varying degrees of knee flexion. We scaled a generic musculoskeletal model to each subject and used the model to estimate muscle forces and compressive tibiofemoral forces during walking. Mild crouch gait (minimum knee flexion 20–35°) produced a peak compressive tibiofemoral force similar to unimpaired walking; however, severe crouch gait (minimum knee flexion > 50°) increased the peak force to greater than 6 times body-weight, more than double the load experienced during unimpaired gait. This increase in compressive tibiofemoral force was primarily due to increases in quadriceps force during crouch gait, which increased quadratically with average stance phase knee flexion (i.e., crouch severity). Increased quadriceps force contributes to larger tibiofemoral and patellofemoral loading which may contribute to knee pain in individuals with crouch gait. PDF
Journal article accepted in Journal of Pediatric Rehabilitation Medicine:
Characteristics associated with improved knee extension after strength training for individuals with cerebral palsy and crouch gait
Muscle weakness may contribute to crouch gait in individuals with cerebral palsy, and some individuals participate in strength training programs to improve crouch gait. Unfortunately, improvements in muscle strength and gait are inconsistent after completing strength training programs. The purpose of this study was to examine changes in knee extensor strength and knee extension angle during walking after strength training in individuals with cerebral palsy who walk in crouch gait and to determine subject characteristics associated with these changes. A literature review was performed of studies published since January 2000 that included strength training, three-dimensional motion analysis, and knee extensor strength measurements for individuals with cerebral palsy. Three studies met these criteria and individual subject data was obtained from the authors for thirty crouch gait subjects. Univariate regression analyses were performed to determine which of ten physical examination and motor performance variables were associated with changes in strength and knee extension during gait. Change in knee extensor strength ranged from a 25% decrease to a 215% increase, and change in minimum knee flexion angle during gait ranged from an improvement of 9° more knee extension to 15° more knee flexion. Individuals without hamstring spasticity had greater improvement in knee extension after strength training. Hamstring spasticity was associated with an undesired increase in knee flexion during walking. Subject-specific factors such as hamstring spasticity may be useful for predicting which subjects will benefit from strength training to improve crouch gait. PDF
Kat Steele presents at Biocomputation at Stanford and is awarded Best Student Presentation:
How do muscle contributions to motion change with crouch severity?
Stanford, CA (November 12, 2011)
Kat Steele presents at International Society of Biomechanics Conference:
How much muscle strength is required to walk in a crouch gait?
Brussels, Belgium (July 3-7, 2011)