AACPDM 2023

Two people smiling and taking a selfie while standing in front of The Shirley Ryan Ability Lab sign. Mia has blonde hair. Charlotte has brown hair and is wearing glasses.

Lab members, Charlotte Caskey and Mia Hoffman attended the 2023 American Academy for Cerebral Palsy and Developmental Medicine (AACPDM) Annual Meeting in Chicago, IL on September 10-13, 2023.

Charlotte gave a poster presentation on “Short-Burst Interval Treadmill Training Increases Step Length and Stability for Children with Cerebral Palsy.”

Mia gave a podium presentation during the Early Detection and Diagnosis session on “Quantifying the Activity Levels of Toddlers with Down Syndrome Playing in a Partial Body Weight Support System.

Great work in the Windy City!

Amina El-Zatmah presents at the CNT 2023 Summer Undergraduate Research Symposium

Amina is wearing the Biomotum Spark exoskeleton while standing in front of her poster at her CNT presentation.This summer, the Steele Lab hosted undergraduate researcher, Amina El-Zatmah, from Santa Monica College. She finished up her 10-week summer Research Experience for Undergraduate (REU) by presenting at the 2023 Summer Undergraduate Research Symposium with the Center for Neurotechnology (CNT).

Amina gave a podium and poster presentation titled “Take A Step: The Effects of Transcutaneous Spinal Cord Stimulation and Exoskeleton Use on Step Length for Children with Cerebral Palsy“.

Amina was supported through mentorship from Charlotte Caskey, Siddhi Shrivastav, Chet Moritz, and Kat Steele.

Way to go, Amina!

 

ASB 2023 Recap

Charlotte is wearing a striped dress and black blazer standing in front of her poster at ASB.Four members of our lab – Kat, Elijah, Charlotte, & Mackenzie – attended ASB 2023 on August 8-11 in Knoxville, TN.

Elijah Kuska gave a podium presentation on “The effects of weakness, contracture, and altered control on walking energetics during crouch gait.”

Charlotte Caskey gave a poster presentation on “The effect of increased sensory feedback from neuromodulation and exoskeleton use on ankle co-contraction in children with cerebral palsy.”

Kat Steele co-hosted a workshop on “Writing a Successful NIH R01 Proposal.”

ASB 2024 will be hosted August 5-8, in Madison, WI.

 

 

Elijah is wearing a striped polo shirt and giving a presentation in front of a group of people at ASB.

RESNA 2023 Conference: Mia Hoffman receives Student Scientific Paper Award

Nicole wearing a black dress and Mia wearing a floral dress standing in front of a large sign at the RESNA conference.Two lab members, Nicole Zaino and Mia Hoffman attended the annual Rehabilitation Engineering and Assistive Technology Society of North America (RESNA) Conference on July 24-26 in New Orleans, LA.

Big congratulations to Mia Hoffman for being selected as an awardee in the Student Scientific Paper Competition (SSPC).

Mia gave a podium presentation on “Exploring the World on Wheels: A Geospatial Comparison of Two Pediatric Mobility Devices

Nicole was also selected to give an interactive poster presentation on “Quantifying Toddler Exploration in Seated and Standing Postures with Powered Mobility“. She also completed her time as the student board member for RESNA.

Way to go, Mia and Nicole!

MR Ebers, MC Rosenberg, JN Kutz, KM Steele (2023) “A machine learning approach to quantify individual gait responses to ankle exoskeletons”

Journal Article in bioRxiv:

Discrepancy modeling is a unique and innovative tool that complements current biomechanical modeling approaches and may accelerate the discovery of individual-specific mechanisms driving responses to exoskeletons, other assistive devices, and clinical interventions.

Aim: This study aims to leverage a neural network-based discrepancy modeling framework to quantify complex changes in gait in response to passive ankle exoskeletons in non-disabled adults. It hypothesized that (i) the Nominal model would predict Exo kinematics and EMG less accurately than for the Nominal condition, and (ii) the Augmented (Nominal+Discrepancy) model would capture greater variance in Exo kinematics and EMG than the Nominal model.

Method: This study analyzed gait data for 12 non-disabled adults during treadmill walking in bilateral passive ankle exoskeletons at a self-selected speed, results of which were used in participant-specific continuous-time neural network with discrepancy models to predict gait responses.

Results: Discrepancy modeling successfully quantified individuals’ exoskeleton responses without requiring knowledge about physiological structure or motor control. However, additional measurement modalities and/or improved resolution are needed to characterize Exo gait, as the discrepancy may not comprehensively capture response due to unexplained variance in Exo gait.

Interpretation: These techniques can be used to accelerate the discovery of individual-specific mechanisms driving exoskeleton responses, thus enabling personalized rehabilitation.