KM Steele, A Seth, JL Hicks, MH Schwartz, SL Delp, (2013) “Muscle contributions to vertical and fore-aft accelerations are altered in subjects with crouch gait.” Gait & Posture

Musculoskeletal simulation used to evaluate crouch gait dynamics.

Journal article accepted in Gait & Posture:

Muscle contributions to vertical and fore-aft accelerations are altered in subjects with crouch gait.

The goals of this study were to determine if the muscle contributions to vertical and fore-aft acceleration of the mass center differ between crouch gait and unimpaired gait and if these muscle contributions change with crouch severity. Examining muscle contributions to mass center acceleration provides insight into the roles of individual muscles during gait and can provide guidance for treatment planning. We calculated vertical and fore-aft accelerations using musculoskeletal simulations of typically developing children and children with cerebral palsy and crouch gait. Analysis of these simulations revealed that during unimpaired gait the quadriceps produce large upward and backward accelerations during early stance, whereas the ankle plantarflexors produce large upward and forward accelerations later in stance. In contrast, during crouch gait, the quadriceps and ankle plantarflexors produce large, opposing fore-aft accelerations throughout stance. The quadriceps force required to accelerate the mass center upward was significantly larger in crouch gait than in unimpaired gait and increased with crouch severity. The gluteus medius accelerated the mass center upward during midstance in unimpaired gait; however, during crouch gait the upward acceleration produced by the gluteus medius was significantly reduced. During unimpaired gait the quadriceps and ankle plantarflexors accelerate the mass center at different times, efficiently modulating fore-aft accelerations. However, during crouch gait, the quadriceps and ankle plantarflexors produce fore-aft accelerations at the same time and the opposing fore-aft accelerations generated by these muscles contribute to the inefficiency of crouch gait. PDF

KM Steele, M van der Krogt, M Schwartz, SL Delp, (2012)“How much muscle strength is required to walk in a crouch gait?” Journal of Biomechanics

KM Steele, M van der Krogt, M Schwartz, SL Delp, (2012)“How much muscle strength is required to walk in a crouch gait?” Journal of Biomechanics

Journal article accepted in Journal of Biomechanics:

How much muscle strength is required to walk in a crouch gait?

Muscle weakness is commonly cited as a cause of crouch gait in individuals with cerebral palsy; however, outcomes after strength training are variable and mechanisms by which muscle weakness may contribute to crouch gait are unclear. Understanding how much muscle strength is required to walk in a crouch gait compared to an unimpaired gait may provide insight into how muscle weakness contributes to crouch gait and assist in the design of strength training programs. The goal of this study was to examine how much muscle groups could be weakened before crouch gait becomes impossible. To investigate this question, we first created muscle-driven simulations of gait for three typically developing children and six children with cerebral palsy who walked with varying degrees of crouch severity. We then simulated muscle weakness by systematically reducing the maximum isometric force of each muscle group until the simulation could no longer reproduce each subject’s gait. This analysis indicated that moderate crouch gait required significantly more knee extensor strength than unimpaired gait. In contrast, moderate crouch gait required significantly less hip abductor strength than unimpaired gait, and mild crouch gait required significantly less ankle plantarflexor strength than unimpaired gait. The reduced strength required from the hip abductors and ankle plantarflexors during crouch gait suggests that weakness of these muscle groups may contribute to crouch gait and that these muscle groups are potential targets for strength training. PDF

KM Steele, A Seth, M Schwartz, SL Delp, “How do muscle contributions to support and propulsion change during crouch gait,” Gait & Clinical Movement Analysis Society, (Grand Rapids, MI) May 12, 2012.

KM Steele, A Seth, M Schwartz, SL Delp, “How do muscle contributions to support and propulsion change during crouch gait,” Gait & Clinical Movement Analysis Society, (Grand Rapids, MI) May 12, 2012.

Kat Steele presents at Gait & Clinical Movement Analysis Society Conference and receives Kevin Granata Young Investigator Award:

How do muscle contributions to support and propulsion change during crouch gait

Grand Rapids, MI (May 12, 2012)

KM Steele, M Demers, M Schwartz, SL Delp, (2012) “Compressive tibiofemoral forces during crouch gait.” Gait & Posture

Tibiofemoral contact forces increases to over 5 times body-weight in severe crouch gait.

Journal article accepted in Gait & Posture:

Compressive tibiofemoral forces during crouch gait

Crouch gait, a common walking pattern in individuals with cerebral palsy, is characterized by excessive flexion of the hip and knee. Many subjects with crouch gait experience knee pain, perhaps because of elevated muscle forces and joint loading. The goal of this study was to examine how muscle forces and compressive tibiofemoral force change with the increasing knee flexion associated with crouch gait. Muscle forces and tibiofemoral force were estimated for three unimpaired children and nine children with cerebral palsy who walked with varying degrees of knee flexion. We scaled a generic musculoskeletal model to each subject and used the model to estimate muscle forces and compressive tibiofemoral forces during walking. Mild crouch gait (minimum knee flexion 20–35°) produced a peak compressive tibiofemoral force similar to unimpaired walking; however, severe crouch gait (minimum knee flexion > 50°) increased the peak force to greater than 6 times body-weight, more than double the load experienced during unimpaired gait. This increase in compressive tibiofemoral force was primarily due to increases in quadriceps force during crouch gait, which increased quadratically with average stance phase knee flexion (i.e., crouch severity). Increased quadriceps force contributes to larger tibiofemoral and patellofemoral loading which may contribute to knee pain in individuals with crouch gait. PDF