PK Gill, JM Donelan, KM Steele, MH Schwartz, AJ Ries (2025) Quantifying altered oxygen kinetics and reducing metabolic test times for children with cerebral palsy: a dual-exponential Bayesian modeling approach

Journal Article in Journal of Applied Physiology

Prior research using indirect calorimetry has shown that children with cerebral palsy (CP) exhibit significantly increased energetic costs during walking. However, metabolic testing to obtain oxygen cost is challenging. As a result, differences in oxygen uptake kinetics (V̇o2) in CP compared with their typically developing peers remain unexplored. Step changes in work rate have been shown to result in an exponential V̇o2 response with three distinct phases 1) cardiodynamic, 2) primary, and 3) steady-state.

Infographic titled “Slower oxygen kinetics and reduced metabolic testing times for children with cerebral palsy.” The conclusion states "“Conclusion: Time constants are longer in CP; only 3 minutes of data are needed for reliable steady- state walking estimates.Aim: This study aimed to apply a dual-exponential Bayesian model to assess the time constant of the primary phase V̇o2 response from resting to walking in children with CP. In addition, evaluate the model’s ability to estimate steady-state V̇o2 using shorter test durations.

Methods: A dual-exponential Bayesian model was applied to metabolic data from a sample of 263 children with CP. The model estimated the time constant of the primary phase V̇o₂ response and tested the accuracy of steady-state V̇o₂ estimation using only the first 3 minutes of data, compared to the standard 6-minute duration.

Results: The median V̇o2 time constant was 33.1 s (5th–95th percentile range: 14.5–69.8 s), significantly longer than reported values for typically developing children (range of means: 10.2–31.6 s). Furthermore, the model accurately estimated steady-state V̇o2 using only the first 3 min of metabolic data compared with the typical 6 min used in current clinical practice. The 3-min estimate explained >95% of the 6-min estimate variance, with <5% mean absolute error.

Interpretation: Slower oxygen kinetics in children with CP suggest impairments in metabolic control, potentially contributing to their higher energy demands. Although the exact mechanisms remain unclear, this study provides valuable insights into the walking energetics of children with CP and presents a more efficient method for analyzing V̇o2 for this population.

Congratulations – Ally Clarke receives ASB Student Travel Award!

A young woman with blonde hair is wearing a green sweater and blue jeans while standing in front of a blossoming tree.

We’re excited to share that Ally Clarke has been selected to receive a Student Travel Award from the American Society of Biomechanics (ASB) to attend the 2025 ASB Annual Meeting in Pittsburgh, PA. This award supports students who have authored abstracts accepted for presentation. Ally’s abstract Influence of Bodyweight Support on Motor Control in Children with Cerebral Palsy was selected for presentation at the meeting, and we’re proud to see her work recognized and supported by the biomechanics community.

Congratulations, Ally!

MH Schwartz, KM Steele, AJ Ries, AG Georgiadis, BA MacWilliams (2022) “A model for understanding the causes and consequences of walking impairments”

Journal Article in PLOS ONE:

Causal inference is inherently ambiguous since we cannot observe multiple realizations of the same person with different characteristics. Causal models must be evaluated through indirect means and reasoning.

Aim: The main objectives in conducting this study were to (1) propose a comprehensive model for quantifying the causes and consequences of walking impairments and (2) demonstrate the potential utility of the model for supporting clinical care and addressing basic scientific questions related to walking.

Method: This paper introduced a model consisting of 10 nodes and 23 primary causal paths and demonstrated the model’s utility using a large sample of gait data.

Results: The model was plausible, captured some well-known cause-effect relationships, provided new insights into others, and generated novel hypotheses requiring further testing through simulation or experiment.

Interpretation: This model is a proposal that is meant to be critically evaluated, validated or refuted, altered, and improved over time. Such improvements might include the introduction of new nodes, variables, and paths.