Sasha Portnova – Best Poster at NWBS!

Alex presenting her poster at the Northwest Biomechanics Symposium.

Sasha Portnova – Northwest Biomechanics Symposium Best Poster Award!

Sasha Portnova, a junior in mechanical engineering who has been doing research in our lab for the past year was awarded the Best Poster Award – BS/MS Category at the 2015 Northwest Biomechanics Symposium. Her research focuses on using 3D-printing to improve the design of upper-extremity orthoses for individuals with spinal cord injury and other neurologic disorders.

H Choi, K Bjornson, S Fatone, KM Steele (2015) “Using musculoskeletal modeling to evaluate the effect of ankle foot orthosis tuning on musculotendon dynamics: a case study.” Disability and Rehabilitation

H Choi, K Bjornson, S Fatone, KM Steele (2015) “Using musculoskeletal modeling to evaluate the effect of ankle foot orthosis tuning on musculotendon dynamics: a case study.” Disability and Rehabilitation

Journal article accepted in Disability and Rehabilitation:

Using musculoskeletal modeling to evaluate the effect of ankle foot orthosis tuning on musculotendon dynamics: a case study.

This case study examines the influence of an ankle foot orthosis footwear combination (AFO-FC) on musculotendon lengths and gait kinematics and kinetics after right thrombotic stroke resulting in left hemiplegia. Methods: Gait analysis was performed over three visits where the subject walked with an AFO-FC with two shank-to-vertical angle (SVA) alignments, a posterior leaf spring AFO (PLS AFO), and shoes alone. Biomechanical and musculoskeletal modeling was used to evaluate musculotendon lengths, kinematics, and kinetics for each condition. Results: The AFO-FC improved walking speed and non-paretic kinematics compared to the PLS AFO and shoes alone. The operating length of the paretic gastrocnemius decreased with the AFO-FC improving knee kinematics in swing, but not stance. As the SVA of the AFO-FC was reduced from 15° to 12°, internal ankle plantar flexor moment increased. Conclusions: Musculoskeletal modeling demonstrated that the AFO-FC altered gastrocnemius operating length during post-stroke hemiplegic gait. Using these tools to evaluate muscle operating lengths can provide insight into underlying mechanisms that may improve gait and guide future AFO-FC design. PDF

KM Steele and S Lee (2014) “Using dynamic musculoskeletal simulation to evaluate altered muscle properties in cerebral palsy.” Proceedings of ASME Dynamics Systems and Control

KM Steele and S Lee (2014) “Using dynamic musculoskeletal simulation to evaluate altered muscle properties in cerebral palsy.” Proceedings of ASME Dynamics Systems and Control

Paper accepted at ASME Dynamics Systems and Control Conference:

Using dynamic musculoskeletal simulation to evaluate altered muscle properties in cerebral palsy

Abstract: Cerebral palsy is caused by an injury to the brain, but also causes many secondary changes in the musculoskeletal system. Altered muscle properties such as contracture, an increased passive resistance to stretch, are common but vary widely between individuals and between muscles. Quantifying these changes is important to understand pathologic movement and create patient-specific treatment plans. Musculoskeletal modeling and simulation have increasingly been used to evaluate pathologic movement in CP; however, these models are based upon muscle properties of unimpaired individuals. In this study, we used a dynamic musculoskeletal simulation of a simple motion, passively moving the ankle, to determine (1) if a model based upon unimpaired muscle properties can accurately represent individuals with cerebral palsy, and (2) if an optimization can be used to adjust passive muscle properties and characterize magnitude of contracture in individual muscles. We created musculoskeletal simulations of ankle motion for nine children with cerebral palsy. Results indicate that the unimpaired musculoskeletal model cannot accurately characterize passive ankle motion for most subjects, but adjusting tendon slack lengths can reduce error and help identify the magnitude of contracture for different muscles.

SR Hamner, A Seth, KM Steele, SL Delp, (2013) “A rolling constraint reduces ground reaction forces and moments in dynamic simulations of walking, running, and crouch gait.” Journal of Biomechanics

SR Hamner, A Seth, KM Steele, SL Delp, (2013) “A rolling constraint reduces ground reaction forces and moments in dynamic simulations of walking, running, and crouch gait.” Journal of Biomechanics

Journal article accepted in Journal of Biomechanics

A rolling constraint reduces ground reaction forces and moments in dynamic simulations of walking, running, and crouch gait

Recent advances in computational technology have dramatically increased the use of muscle-driven simulation to study accelerations produced by muscles during gait. Accelerations computed from muscle-driven simulations are sensitive to the model used to represent contact between the foot and ground. A foot-ground contact model must be able to calculate ground reaction forces and moments that are consistent with experimentally measured ground reaction forces and moments. We show here that a rolling constraint can model foot-ground contact and reproduce measured ground reaction forces and moments in an induced acceleration analysis of muscle-driven simulations of walking, running, and crouch gait. We also illustrate that a point constraint and a weld constraint used to model foot-ground contact in previous studies produce inaccurate reaction moments and lead to contradictory interpretations of muscle function. To enable others to use and test these different constraint types (i.e., rolling, point, and weld constraints) we have included them as part of an induced acceleration analysis in OpenSim, a freely-available biomechanics simulation package. PDF