H Choi, TL Wren, KM Steele (2016) “Gastrocnemius operating length with ankle foot orthoses in cerebral palsy.” Prosthetics & Orthotics International

Example of gastrocnemius operating length from one subject with different AFOs.

Journal article in Prosthetics & Orthotics International:

How does the operating length of the gastrocnemius vary with different common AFOs in children with cerebral palsy?

Clinical relevance: Determining whether ankle foot orthoses stretch tight muscles can inform future orthotic design and potentially provide a platform for integrating therapy into daily life. However, stretching tight muscles must be balanced with other goals of orthoses such as improving gait and preventing bone deformities.

Choi, H. Evaluation of Gait and Muscle Function with Ankle Foot Orthoses. PhD Dissertation.

 

A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy, University of Washington, 2016. To download and read in full, CLICK HERE. to access through the University of Washington’s ResearchWorks Archive.

A methods figure is shown depicting an Ultrasound Coordinate System. The figure depicts how the Achilles tendon length is quantified by using an ultrasound, participant, and modeling system with motion capture markers. [In photo text: Global Coordinate System; Ultrasound Coordinate System; Figure 19 Quantification of Achilles tendon length. On left, AFO, ultrasound, and position of experimental markers. On right, scaled musculoskeletal model and schematic of coordinate systems for ultrasound to define AT length.Background: Many individuals with cerebral palsy (CP) and stroke are prescribed ankle foot orthoses
(AFOs) for use during daily life. AFOs have been shown to improve pathologic gait and walking
speed in CP and stroke by providing support and alignment. There are many different types of
AFOs available such as posterior leaf spring AFOs, rigid AFOs, and articulated AFOs. Further,
there are many parameters that can be customized or tuned for each type of AFO, such as
stiffness, heel height, shank to vertical angle, and foot plate length. However, how different types
of AFOs and the customization of specific parameters impact muscle function remains unclear.

Purpose: The goals of this dissertation were to evaluate how different types of AFOs and different
tuning parameters impact gait kinematics and muscle function. Of particular interest is the
gastrocnemius, a key muscle that crosses the knee and ankle joints and is commonly tight among
individuals with CP or stroke. Gastrocnemius operating length, defined as the total muscle and
tendon length during a functional activity, influences ankle and knee kinematics during gait.

Results/Discussion: This dissertation provides important evidence for how humans adapt to various AFO
properties and suggests important implications for the design and prescription of AFOs. This
work provides a quantitative evaluation of how AFOs impact musculotendon dynamics among
individuals with stroke (Aim 1) and cerebral palsy (Aim 2). The fabrication methods in Aim 3
creates a powerful and flexible research platform for evaluating AFO design, which may be
extended to fabrication of AFOs for daily use with further improvements in additive
manufacturing materials and methods. The final study (Aim 4), provides the first experimental
evidence combining ultrasound and musculoskeletal modeling to understand how muscle and
tendon length are impacted by AFO design. These evaluations provide guidance for future AFO
design and prescription that can not only augment human mobility for unimpaired individuals,
but also provide improve metrics for improving function and guiding rehabilitation for
individuals with neurologic impairments.

Michael MacConnell, Bradley Wachter, CJ Smith, and Sasha Portnova Present at the Undergraduate Research Symposium

Undergraduate Research Symposium graphic displaying May 20th in Mary Gates Hall.

Our undergraduate researchers presented in Mary Gates Hall today, presenting their research from 11am-1pm. Member of the community, faculty, and staff stopped by to hear about Bradley and CJ’s work developing an open-source proximal control orthosis, Sasha’s wrist-driven, wrist-hand orthosis, and Michael’s work on ankle foot orthoses as a rehabilitation tool. Great job, everyone!

 

 

CJ and Bradley, members of our research team, discuss the outcome measures of their proximal control device with interested community members. Michael MacConnell, a member of our research team, shares his research with members of the community. Sasha Portnova, a member of our research team, fields questions from an interested member of the community about her wrist-driven, wrist-hand orthosis.

CL Bennett, K Cen, KM Steele, DK Rosner, (2016) “An intimate laboratory? Prostheses as a tool for experimenting with identity and normalcy.” CHI Human Factors in Computing Systems, ACM

Prostheses from the 15th century (medieval metal hand) to the 21st century (3D-printed enable hand).

Peer-review paper at CHI Human Factors in Computing Systems Annual Conference:

Prostheses are more than just a tool to enhance function – they strongly influence perceptions of identity and normalcy.

Prostheses from the 15th century (medieval metal hand) to the 21st century (3D-printed enable hand).Abstract: This paper is about the aspects of ability, selfhood, and normalcy embodied in people’s relationships with prostheses. Drawing on interviews with 14 individuals with upper-limb loss and diverse experiences with prostheses, we find people not only choose to use and not use prosthesis throughout their lives but also form close and complex relationships with them. The design of “assistive” technology often focuses on enhancing function; however, we found that prostheses played important roles in people’s development of identity and sense of normalcy. Even when a prosthesis failed functionally, such as was the case with 3D-printed prostheses created by an on-line open-source maker community (e-NABLE), we found people still praised the design and initiative because of the positive impacts on popular culture, identity, and community building. This work surfaces crucial questions about the role of design interventions in identity production, the promise of maker communities for accelerating innovation, and a broader definition of “assistive” technology.

View the video for more information on this work.