EC Kuska, KM Steele (2024) “Does crouch alter the effects of neuromuscular impairments on gait? A simulation study”

Journal Article in Journal of Biomechanics

Cerebral palsy (CP) is a neurologic injury that impacts control of movement. Individuals with CP also often develop secondary impairments like weakness and contracture. Both altered motor control and secondary impairments influence how an individual walks after neurologic injury. However, understanding the complex interactions between and relative effects of these impairments makes analyzing and improving walking capacity in CP challenging.

A sagittal-plane musculoskeletal model and neuromuscular simulation framework that tracked average nondisabled (ND) kinematics and moderate and severe crouch gait. The model contains nine degrees-of-freedom (pelvic tilt and translation, and right and left hip, knee, and ankle flexion) actuated by eight Hill-type musculotendinous units per leg. The objective function minimized deviations from tracked kinematics and the sum of muscle activations squared (a2). We perturbed each gait simulation with multi-modal neuromuscular impairments—altered control, weakness, and contracture—of varying severities. Altered control was simulated by reducing the number of fixed synergies controlling each leg, and weakness and contracture were simulated by reducing a muscle’s maximum isometric force ( ) and tendon slack length ( ), respectively. A Bayesian Additive Regression Trees (BART) model then predicted resultant a2 from the simulated neuromuscular impairments for crouch and ND gait to evaluate the relative effects of each simulated neuromuscular impairment on the muscle activations required to maintain each gait pattern.Aim: The purpose of this study was to investigate the interactions between neuromuscular impairments and gait in CP.

Methods: We used a sagittal-plane musculoskeletal model and neuromuscular control framework to simulate crouch and nondisabled gait. We perturbed each simulation by varying the number of synergies controlling each leg (altered control), and imposed weakness and contracture. A Bayesian Additive Regression Trees (BART) model was also used to parse the relative effects of each impairment on the muscle activations required for each gait pattern.

Results: By using these simulations to evaluate gait-pattern specific effects of neuromuscular impairments, we identified some advantages of crouch gait. For example, crouch tolerated 13 % and 22 % more plantarflexor weakness than nondisabled gait without and with altered control, respectively. Furthermore, BART demonstrated that plantarflexor weakness had twice the effect on total muscle activity required during nondisabled gait than crouch gait. However, crouch gait was also disadvantageous in the presence of vasti weakness: crouch gait increased the effects of vasti weakness on gait without and with altered control.

Interpretation: These simulations highlight gait-pattern specific effects and interactions between neuromuscular impairments. Utilizing computational techniques to understand these effects can elicit advantages of gait deviations, providing insight into why individuals may select their gait pattern and possible interventions to improve energetics.

EC Kuska, N Mehrabi, MH Schwartz, KM Steele (2022) “Number of synergies impacts sensitivity of gait to weakness and contracture”

Journal Article in Journal of Biomechanics

Muscle activity during gait can be described by a small set of synergies, weighted groups of muscles, that are theorized to reflect underlying neural control. For people with neurologic injuries, like cerebral palsy or stroke, even fewer synergies are required to explain muscle activity during gait. This reduction in synergies is thought to reflect altered control and is associated with impairment severity and treatment outcomes. Individuals with neurologic injuries also develop secondary musculoskeletal impairments, like weakness or contracture, that can impact gait. Yet, the combined impacts of altered control and musculoskeletal impairments on gait remains unclear.

A two-dimensional sagittal plane musculoskeletal model and synergy simulation framework tracked unimpaired gait kinematics. The model had nine degrees of freedom, including right and left leg hip, knee, and ankle flexion, actuated by eight muscles per leg. Fixed sets of synergies constrained control, forcing the direct collocation algorithm to solve for synergy activations. The objective function minimized deviations from unimpaired kinematics and the sum of muscle activations squared (neural demand). Weakness, simulated by a reduction in maximum isometric force, and contracture, simulated by a reduction in tendon slack length, were progressively increased for each muscle or muscle group until the simulation failed to replicate unimpaired gait. Kinematic deviations and convergence determined the success of the simulation. The primary outcomes were (1) musculoskeletal impairment thresholds, defined by the amount of weakness or contracture before failure, and (2) neural demand of each gait cycle.Aim: In this study, we use a two-dimensional musculoskeletal model constrained to synergy control to simulate unimpaired gait.

Methods: We vary the number of synergies, while simulating muscle weakness and contracture to examine how altered control impacts sensitivity to musculoskeletal impairment while tracking unimpaired gait.

Results: Results demonstrate that reducing the number of synergies increases sensitivity to weakness and contracture for specific muscle groups. For example, simulations using five-synergy control tolerated 40% and 51% more knee extensor weakness than those using four- or three-synergy control, respectively. Furthermore, when constrained to four- or three-synergy control, the model was increasingly sensitive to contracture and weakness of proximal muscles, such as the hamstring and hip flexors. Contrastingly, neither the amount of generalized nor plantarflexor weakness tolerated was affected by the number of synergies.

Interpretation: These findings highlight the interactions between altered control and musculoskeletal impairments, emphasizing the importance of measuring and incorporating both in future simulation and experimental studies.

BR Shuman, M Goudriaan, K Desloovere, MH Schwartz, KM Steele (2019) “Muscle Synergy Constraints Do Not Improve Estimates of Muscle Activity From Static Optimization During Gait for Unimpaired Children or Children With Cerebral Palsy” Frontiers in Neurorobotics

Journal Article in Frontiers of Neurorobotics:

This study demonstrated that muscle activations estimated from static optimization using generic musculoskeletal modeling does not accurately predict EMG profiles for children with CP or TD peers. Constraining activation patterns to experimentally measured synergies increased estimated muscle stresses, but did not improve the estimation of muscle activations for either group.

figure depicting flow chart with modeling optimization and muscle activity
Constraining simulated activations in inverse dynamic simulations to subject-specific synergies alone does not improve estimation of muscle activations during gait for generic musculoskeletal models.

Background

Neuromusculoskeletal simulation provides a promising platform to inform the design of assistive devices or inform rehabilitation. For these applications, a simulation must be able to accurately represent the person of interest, such as an individual with a neurologic injury. If a simulation fails to predict how an individual recruits and coordinates their muscles during movement, it will have limited utility for informing design or rehabilitation. While inverse dynamic simulations have previously been used to evaluate anticipated responses from interventions, like orthopaedic surgery or orthoses, they frequently struggle to accurately estimate muscle activations, even for tasks like walking. The simulated muscle activity often fails to represent experimentally measured muscle activity from electromyographic (EMG) recordings. Research has theorized that the nervous system may simplify the range of possible activations used during dynamic tasks, by constraining activations to weighted groups of muscles, referred to as muscle synergies. Synergies are altered after neurological injury, such as stroke or cerebral palsy (CP), and may provide a method for improving subject-specific models of neuromuscular control.

Purpose

The aim of this study was to test whether constraining simulation to synergies could improve estimated muscle activations compared to EMG data.

Method

We evaluated modeled muscle activations during gait for six typically developing children (TD) and six children with CP. Muscle activations were estimated with: 1) static optimization (SO), minimizing muscle activations squared, and 2) synergy static optimization (SynSO), minimizing synergy activations squared using the weights identified from EMG data for 2-5 synergies.

Results

While SynSO caused changes in estimated activations compared to SO, the correlation to EMG data was not higher in SynSO than SO for either TD or CP groups . The correlations to EMG were higher in CP than TD for both SO (CP: 0.48, TD: 0.36) and SynSO (CP: 0.46, TD: 0.26 for 5 synergies). Constraining activations to SynSO caused the simulated muscle stress to increase compared to SO for all individuals, causing a 157% increase with two synergies.

Conclusions

These results suggest that constraining simulated activations in inverse dynamic simulations to subject-specific synergies alone does not improve estimation of muscle activations during gait for generic musculoskeletal models.