HuskyADAPT featured on GeekWire

Students and community members gather on campus for the HuskyADAPT Inclusive Design & Engineering Showcase.

The HuskyADAPT Inclusive Design & Engineering Showcase was last week where students presented the projects that they have been working on for the past year. These ranged from a kayak paddle attachment for individuals with upper limb differences, an accessible and functional stylus for individuals with muscular or cognitive impairments, and a universal wireless switch for adapted toys.

Read more here: https://www.geekwire.com/2019/inclusive-design-accessible-tech-spotlight-univ-washington-student-showcase/

Spasticity Research Award Nominations

Nicole Zaino (wearing glasses) poses on campus

Walking takes energy – but for kids with cerebral palsy, walking can be exhausting. The average child with cerebral palsy consumes two times the amount of energy during walking compared to typically-developing peers – that is the equivalent of jogging or climbing stairs!

The reasons for why walking takes so much energy for children with cerebral palsy remains largely unknown. The extra muscle activity caused by spasticity has often been theorized as a large contributing factor. If this was true, we would expect that treatments that reduce spasticity, like selective dorsal rhizotomy, could dramatically reduce energy during walking.

Led by Nicole Zaino, a new PhD student in the lab, and our collaborator Mike Schwartz at Gillette Children’s Specialty we have been investigating this question. By analyzing energy consumption for children with cerebral palsy who underwent rhizotomy and matched peers with cerebral palsy, we were determined that reducing spasticity does not lead to dramatic decreases in energy consumption.

This research has been nominated as a finalist for two awards at the International Society of Biomechanics Conference. This work was selected as one of 5 finalist for the Clinical Biomechanics Award. Nicole will also present as one of the finalists for the David Winter Young Investigator Award. The final awards will be announced at the conference in Calgary the first week of August. Good luck Nicole!

You can learn more about the study and read the preprint on BioRxiv:

Spasticity reduction in children with cerebral palsy is not associated with reduced energy consumption during walking

N Mehrabi, MH Schwartz, KM Steele (2019) “Can altered muscle synergies control unimpaired gait?” Journal of Biomechanics

Journal Article in Journal of Biomechanics:

Musculoskeletal models of gait with lower dimensional control spaces showed that an individual with reduced number of synergies could not produce an unimpaired gait

Background: Recent studies have postulated that the human motor control system recruits groups of muscles through low-dimensional motor commands, or muscle synergies. This scheme simplifies the neural control problem associated with the high-dimensional structure of the neuromuscular system. Several lines of evidence have suggested that neurological injuries, such as stroke or cerebral palsy, may reduce the dimensions that are available to the motor control system, and these altered dimensions or synergies are thought to contribute to impaired walking patterns. However, no study has investigated whether impaired low-dimensional control spaces necessarily lead to impaired walking patterns.

Methods: In this study, using a two-dimensional model of walking, we developed a synergy-based control framework that can simulate the dynamics of walking.

Results: The simulation analysis showed that a synergy-based control scheme can produce well-coordinated movements of walking matching unimpaired gait. However, when the dimensions available to the controller were reduced, the simplified emergent pattern deviated from unimpaired gait. A system with two synergies, similar to those seen after neurological injury, could not produce an unimpaired walking pattern.

Conclusions: These findings provide further evidence that altered muscle synergies can contribute to impaired gait patterns and may need to be directly addressed to improve gait after neurological injury.

HA Feldner, D Howell, VE Kelly, S Westcott McCoy, KM Steele (2019) “‘Look, Your Muscles Are Firing!’: A Qualitative Study of Clinician Perspectives on the Use of Surface Electromyography in Neurorehabilitation.” Archives of Physical Medicine and Rehabilitation

Journal Article in Archives of Physical Medicine and Rehabilitation:

We collaborated with rehabilitation clinicians across the Seattle region to understand the barriers and facilitators of using wireless electromyography sensors to track motor recovery in the clinic and community

Objective: To examine the perceived value, benefits, drawbacks, and ideas for technology development and implementation of surface electromyography recordings in neurologic rehabilitation practice from clinical stakeholder perspectives.

Design: A qualitative, phenomenological study was conducted. In-depth, semistructured interviews and focus groups were completed. Sessions included questions about clinician perspectives and demonstrations of surface electromyography systems to garner perceptions of specific system features.

Setting: The study was conducted at hospital systems in a large metropolitan area.

Participants: Adult and pediatric physical therapists, occupational therapists, and physiatrists from inpatient, outpatient, and research settings (N=22) took part in the study.

Interventions: Not applicable.

Main Outcome Measures: Interviews and focus groups were audio-recorded, transcribed verbatim, then coded for analysis into themes.

Results: Four major themes emerged: (1) low-tech clinical practice and future directions for rehabilitation; (2) barriers to surface electromyography uptake and potential solutions; (3) benefits of surface electromyography for targeted populations; and (4) essential features of surface electromyography systems.

Conclusions: Surface electromyography systems were not routinely utilized for assessment or intervention following neurologic injury. Despite recognition of potential clinical benefits of surface electromyography use, clinicians identified limited time and resources as key barriers to implementation. Perspectives on design and surface electromyography system features indicated the need for streamlined, intuitive, and clinically effective applications. Further research is needed to determine feasibility and clinical relevance of surface electromyography in rehabilitation intervention.

Congratulations – Makoto Eyre is awarded a UWIN WRF Innovation Undergraduate Fellowship in Neuroengineering

Makoto Eyre has been selected as a WRF Innovation Undergraduate Fellow in Neuroengineering for the UW Institute for Neuroengineering. The UWIN fellowship provides funding and is a highly prestigious and selective competition. Congratulations, Makoto!

Makoto’s research seeks to use muscle synergies, a clinically-useful, low-dimensional representation of motor coordination, to quantify and compare the effects of AFOs on motor control strategies employed during SS and nSS gait. Ankle foot orthoses (AFOs) are a common intervention for cerebral palsy and stroke survivors, with most research on the impacts of AFOs on impaired locomotion and motor control focuses on steady state (SS) gait despite a large portion of locomotion being non-steady state (nSS). As nSS locomotion may rely on different neuromuscular control strategies, AFOs optimized for SS may be suboptimal to nSS locomotion.