NIH cerebral palsy strategic plan – our comments

The National Institutes of Health recently released the “Strategic Plan for Cerebral Palsy Research” which outlines challenges and priorities to guide future research to improve the lives of people with cerebral palsy.

Our diverse research group enjoyed reading and discussing this plan, which will likely influence our future research goals and support. We’ve shared our group’s comments, organized and prepared by Dr. Heather Feldner, below:

“Our research group appreciated the committee’s focus on creating a centralized data source for CP, attention to the needs and perspectives of adults with CP, their childhood experiences, and their transition from pediatric to adult healthcare providers, and the call for greater caregiver support services and patient-reported outcomes. However, we also had concerns. First, the terminology is inconsistent and often inappropriate. “Cure”, “damage”, and the implication that people with CP cannot be “healthy” is not empowering language in supporting the lives, unique contributions, and perspectives of people with CP as diverse and valued individuals in our society. Further, while advocates of people with CP were included in this stakeholder group, there is a concerning lack of people who actually have a diagnosis of CP, when these should be the primary stakeholders setting a research agenda about their own lives and needs. Finally, given the uncertainty of government funding agencies like the NIH under the current administration’s budget proposal, and the speed of science of translating research from bench to bedside, it appears that too little priority has been placed on interventions or programs that could have an influence right now for the people living with CP in the US dealing with self-identified participation issues such as access to employment and education, as well as impairment-related needs such as pain management, access to technology, and functional mobility.

We are excited that NIH is engaged to set a national research agenda for cerebral palsy and we look forward to continuing to serve this community.

Logo of NINDS/NICHD Plan for cerebral palsy research

H Choi, TL Wren, KM Steele (2016) “Gastrocnemius operating length with ankle foot orthoses in cerebral palsy.” Prosthetics & Orthotics International

Example of gastrocnemius operating length from one subject with different AFOs.

Journal article in Prosthetics & Orthotics International:

How does the operating length of the gastrocnemius vary with different common AFOs in children with cerebral palsy?

Clinical relevance: Determining whether ankle foot orthoses stretch tight muscles can inform future orthotic design and potentially provide a platform for integrating therapy into daily life. However, stretching tight muscles must be balanced with other goals of orthoses such as improving gait and preventing bone deformities.

Work by Dr. Steele and Ben Shuman featured in The Daily news post

The team found that of the 473 children who had undergone surgery in their current study, those with higher Walk-DMC scores prior to surgery had better treatment outcomes, even after factoring in age and prior treatment.

The Daily, of the University of Washington, posted an article about Dr. Steele and Ben Shuman’s recent work on predicting cerebral palsy treatment outcomes based on motor modules, or muscle synergies. This work is in partnership with Michael Schwartz at Gillette Children’s Specialty Healthcare.  An excerpt from the article is below. To read the article in full, click here.

Ben Shuman, a PhD student in the Steele Lab, smiles while working with electromyography equipment (EMG). Photo credit: Liam Brozik

 

Walk-DMC – Kat Steele and Michael Schwartz are featured in GeekWire

A staff member of a gait lab kneels next to a child to apply additional motion detecting markers at Gillette Children's Specialty Healthcare. Another staff member sits behind a desk, observing the instrumentation on the lab computer. Photo taken by Michael Schwartz.

GeekWire, a national technology news resource, has featured Dr. Steele and Dr. Schwartz‘s Walk-DMC in a special series focused on community issues and innovative solutions to societal challenges. Lisa Stiffler reports on the analysis that is used to create Walk-DMC, an assessment tool that uses routinely collected electromyography (EMG) data to identify which kids are the strongest candidates for surgery — and to help develop alternative treatments for children needing a different solution.

“It’s a very complex problem,” said Steele, who is a co-author of a paper explaining the Walk DMC metric published this month in the journal Developmental Medicine & Child Neurology. “You can have two individuals who are walking visually nearly identically,” she said, “but how they’re controlling that motion can be very different.”

To read the full article, click HERE.

EE Bulter, KM Steele, L Torburn, JG Gamble, J Rose (2016) “Clinical motion analyses over eight consecutive years in a child with crouch gait: a case report.” Journal of Medical Case Reports

Sagittal-plane images of child from 6-13 years of age.

Journal article in the Journal of Medical Case Reports:

A case study of crouch gait over 8-years in a child with no surgical interventions.

Sagittal-plane images of child from 6-13 years of age.

Background: This case report provides a unique look at the progression of crouch gait in a child with cerebral palsy over an 8-year time period, through annual physical examinations, three-dimensional gait analyses, and evaluation of postural balance. Our patient received regular botulinum toxin-A injections, casting, and physical therapy but no surgical interventions.

Case presentation: A white American boy with spastic diplegic cerebral palsy was evaluated annually by clinical motion analyses, including physical examination, joint kinematics, electromyography, energy expenditure, and standing postural balance tests, from 6 to 13 years of age. These analyses revealed that the biomechanical factors contributing to our patient’s crouch gait were weak plantar flexors, short and spastic hamstrings, moderately short hip flexors, and external rotation of the tibiae. Despite annual recommendations for surgical lengthening of the hamstrings, the family opted for non-surgical treatment through botulinum toxin-A injections, casting, and exercise. Our patient’s crouch gait improved between ages 6 and 9, then worsened at age 10, concurrent with his greatest body mass index, increased plantar flexor weakness, increased standing postural sway, slowest normalized walking speed, and greatest walking energy expenditure. Although our patient’s maximum knee extension in stance improved by 14 degrees at 13 years of age compared to 6 years of age, peak knee flexion in swing declined, his ankles became more dorsiflexed, his hips became more internally rotated, and his tibiae became more externally rotated. From 6 to 9 years of age, our patient’s minimum stance-phase knee flexion varied in an inverse relationship with his body mass index; from 10 to 13 years of age, changes in his minimum stance-phase knee flexion paralleled changes in his body mass index.

Conclusions: The motor deficits of weakness, spasticity, shortened muscle-tendon lengths, and impaired selective motor control were highlighted by our patient’s clinical motion analyses. Overall, our patient’s crouch gait improved mildly with aggressive non-operative management and a supportive family dedicated to regular home exercise. The annual clinical motion analyses identified changes in motor deficits that were associated with changes in the child’s walking pattern, suggesting that these analyses can serve to track the progression of children with spastic cerebral palsy.