KA Ingraham, HA Feldner, KM Steele (2024) “An Instrumented ‘Explorer Mini’ for Quantitative Analysis of Toddlers Using Powered Mobility for Exploratory, Mobile, and Digital Play”

Journal Article in the 10th IEEE RAS EMBS Intl. Conference on Biomedical Robotics and Biomechatronics (BioRob).

For toddlers with disabilities, assistive technologies can enable developmentally appropriate exploration, play, and participation, but little is known about how children interact with accessible interfaces, such as joysticks.

The instrumented explorer mini measures joystick position, wheel rotations, and bodyweight loading at 100 Hz. Representative raw data collected from the device are shown here for 100 seconds.Aim: The Permobil Explorer Mini is currently the only commercially available, FDA-cleared pediatric powered mobility device in the United States designed for children ages 12–36 months. In this paper, we present an instrumented Explorer Mini that enables us to quantitatively analyze how young children with disabilities learn to use and interact with joystick-based technology.

Methods: We discuss preliminary results from two studies conducted with two toddlers with motor disabilities using the instrumented Explorer Mini in different contexts: 1) during exploratory mobile play (i.e., driving) and 2) during interactive digital play (i.e., playing a simple computer game).

Results: In the first study, we found that, for a given 15–20 minute play session, participants drove between 11.3 and 65.6 m, and engaged with the joystick between 53 and 165 times. In the second study, we found that children could use the joystick to play a simple cause-and-effect computer game, but that they disproportionately used the ‘forward’ direction of the joystick, regardless of the direction of the displayed target.

Interpretation: The novel experimental platform, research framework, and preliminary data presented in this paper lay the foundation to study how children with disabilities learn to use and interact with joystick-based assistive technologies. This knowledge is critical to inform the design and advancement of developmentally appropriate technologies that equitably support toddlers in exploration, mobility, and play.

NL Zaino, KA Ingraham, ME Hoffman, HA Feldner, KM Steele (2024) “Quantifying toddler exploration in different postures with powered mobility”

Journal Article in Assistive Technology

Access to powered mobility can support play and development for toddlers with disabilities. Using powered mobility in a standing posture has been theorized to support development of muscle coordination, balance, head and trunk stability, and transition to ambulation.

Aim: The purpose of this study was to quantify and characterize joystick control, bodyweight support, and muscle activity while using the Permobil Explorer Mini in seated and supported standing postures.

Methods: Nine children with mobility disabilities participated in four visits where they completed two, 15–20 minute play sessions, one in each posture, with a break between.

Results: We found that all toddlers engaged with the joystick in both postures, with individual differences in favored directions and control patterns. Participants had similar loading through their feet in both postures, but had slightly higher muscle activity in standing, especially while driving.

Interpretation: These results demonstrate that young children with disabilities quickly engage with joystick-based powered mobility in seated and standing postures, with important individual differences that can inform future design of devices and interventions to support play and development.

Dr. Kim Ingraham on “Gears of Progress” Podcast

Gears of progress Episode 5 featured Kim Ingraham. “Gears of Progress” Episode Five featured Steele Lab Alumni, Dr. Kim Ingraham on personalized controllers for lower-limb assistive robotics, powered mobility devices for kids, and a path to a faculty position.

Gears of Progress Logo with three gears featuring assistive devices

Name: Gears of Progress

PlatformsSpotifyApple PodcastsAmazon MusicCastbox

Release frequency: bi-weekly on Fridays

Theme: Podcast about research and innovations in rehabilitation engineering and assistive technologies aimed to improve accessibility for people with disabilities. Every episode will feature engineers, medical professionals, end-users, and organizations who focus on improving the health and well-being of individuals with disabilities. We will be covering topics such as emerging tech, outcome measures, medical practice, public policy, accessibility education, and so much more!

Twitterhttps://twitter.com/GearsOfProgress

Mia Hoffman featured on the Department of Mechanical Engineering website!

 

ME Hoffman, KM Steele, JE Froehlich, KN Winfree, HA Feldner (2023) “Off to the park: a geospatial investigation of adapted ride-on car usage”

Journal Article in Disability & Rehabilitation: Assistive Technology:

The accessibility of the built environment is an important factor to consider when providing a mobility device to a young child and their family to use in the community.

Figure 8. The accessibility scores for the sidewalks near each Participant’s (P5, P10, P17) home on the left and the drive path of the participant on the right. Participants generally avoided driving on streets that were not accessible.

Aim: To quantify the driving patterns of children using an adapted ride-on car in their home and community environment over the course of a year using an integrated datalogger.

Method: Fourteen children (2.5 ± 1.45 years old, 8 male: 6 female) used adapted ride-on cars outside and inside of their homes over the course of a year. We tracked their device use metrics with a custom datalogger and geospatial data. To measure environmental accessibility, we used the AccessScore from Project Sidewalk, an open-source accessibility mapping initiative, and the Walk Score, a measure of neighborhood pedestrian-friendliness.

Results: More play sessions took place indoors, within the participants’ homes. However, when the adapted ride-on cars were used outside the home, children engaged in longer play sessions, actively drove for a larger portion of the session, and covered greater distances. Most children tended to drive their ROCs in close proximity to their homes. Most notably, we found that children drove more in pedestrian-friendly neighborhoods and when in proximity to accessible paths.

Interpretation: The accessibility of the built environment is paramount when providing any form of mobility device to a child. Providing an accessible place for a child to move, play, and explore is critical in helping a child and family adopt the mobility device into their daily life.