Engineering Discovery Days 2024

The University of Washington College of Engineering re-launched Engineering Discovery Days this spring. Discovery Days has been a signature outreach event for over 100 years, providing fun and enriching hands-on experiences for students, teachers, and families from across the state. Discovery Days is also an opportunity for our community of UW Engineering students, staff, and faculty to share their passion for engineering with the next generation of innovators.

The UW Biomechanics Faculty put together an exhibit titled “Biomechanics Assemble! From Exoskeletons to Cytoskeletons” with the goal of demonstrating how we study movement and forces in humans and cells at UW.

The Steele Lab along with the Ingraham Lab hosted two booths. Each booth featured hand-on activities and games for students to engage with.

The first booth features an ensemble of exoskeletons and assistive devices, including the Biomotum Spark and 3D printed prosthetic hands.

The second booth featured two games for students to engage with, including “Myodino” using Delsys EMG sensors, and “UltraLeap Ring Sorting” VR game using the UltraLeap hand tracking technology.

In this lab, we think the human body is “The Ultimate Machine” and we were so excited to share HOW we study the human body at Discovery Days 2024.

National Biomechanics Day 2024

Last week the Steele Lab celebrated National Biomechanics Day (NBD) on April 3, 2024 at the VA Puget Sound. Mia Hoffman, Sasha Portnova, and Katie Landwehr, alongside fellow Biomechanics researchers with the Ingraham Lab, and Center for Limb Loss and MoBility (CLiMB) hosted over 75 students from a local high school.

A group of five people posing for a photo

NBD is a world-wide celebration of Biomechanics in its many forms for high school students and teachers. Steele Lab PhD student Mia Hoffman, and Ingraham Lab PhD student Annika Pfister were recently awarded a $1000 grant from the American Society of Biomechanics and National Biomechanics Day to host an outreach event for high school students focused on disability biomechanics.

Mia and Katie hosted a station on “Switch-Adapted Toys & Accessible Design”

Sasha, Annika, and Zijie hosted a station on “Myodino: Activate your Muscles”

AM Spomer, RZ Yan, MH Schwartz, KM Steele (2023) “Motor control complexity can be dynamically simplified during gait pattern exploration using motor control-based biofeedback”

Journal Article in Journal of Neurophysiology

Understanding how the central nervous system coordinates diverse motor outputs has been a topic of extensive investigation. Although it is generally accepted that a small set of synergies underlies many common activities, such as walking, whether synergies are equally robust across a broader array of gait patterns or can be flexibly modified remains unclear.

Schematic of the custom biofeedback system. A) Motor control biofeedback used to encourage pattern exploration. B) Individuals significantly modified motor control complexity using biofeedback. C) Distal gait mechanics were associated with changes in control complexity.Aim: The aim of this study was to characterize the robustness of synergies to changing biomechanical constraints during walking. Specifically, we evaluated the extent to which nondisabled individuals could modulate both synergy structure and complexity while using motor control biofeedback to drive broad gait pattern exploration.

Methods: We evaluated the extent to which synergies changed as nondisabled adults (n = 14) explored gait patterns using custom biofeedback. Secondarily, we used Bayesian additive regression trees to identify factors that were associated with synergy modulation.

Results: Participants explored 41.1 ± 8.0 gait patterns using biofeedback, during which synergy recruitment changed depending on the type and magnitude of gait pattern modification. Specifically, a consistent set of synergies was recruited to accommodate small deviations from baseline, but additional synergies emerged for larger gait changes. Synergy complexity was similarly modulated; complexity decreased for 82.6% of the attempted gait patterns, but distal gait mechanics were strongly associated with these changes. In particular, greater ankle dorsiflexion moments and knee flexion through stance, as well as greater knee extension moments at initial contact, corresponded to a reduction in synergy complexity.

Interpretation: Taken together, these results suggest that the central nervous system preferentially adopts a low-dimensional, largely invariant control strategy but can modify that strategy to produce diverse gait patterns. Beyond improving understanding of how synergies are recruited during gait, study outcomes may also help identify parameters that can be targeted with interventions to alter synergies and improve motor control after neurological injury.

New & Noteworthy: We used a motor control-based biofeedback system and machine learning to characterize the extent to which nondisabled adults can modulate synergies during gait pattern exploration. Results revealed that a small library of synergies underlies an array of gait patterns but that recruitment from this library changes as a function of the imposed biomechanical constraints. Our findings enhance understanding of the neural control of gait and may inform biofeedback strategies to improve synergy recruitment after neurological injury.

KM Steele, MH Schwartz (2022) “Causal Effects of Motor Control on Gait Kinematics After Orthopedic Surgery in Cerebral Palsy: A Machine-Learning Approach”

Journal Article in Frontiers in Human Neuroscience

Altered motor control is common in cerebral palsy (CP). Understanding how altered motor control affects movement and treatment outcomes is important but challenging due to complex interactions with other neuromuscular impairments. While regression can be used to examine associations between impairments and movement, causal modeling provides a mathematical framework to specify assumed causal relationships, identify covariates that may introduce bias, and test model plausibility.

FIGURE 1 Directed Acyclic Graph (DAG) describing the assumed causal relationships between SEMLS (exposure) and 1GDI (outcome). The causal relationship between SEMLS and 1GDI is mediated by changes in impairments (1Imp). Baseline GDI (GDIpre) and 1GDI are related by measurement methods and other, unmeasured factors. Baseline impairment (Imppre), surgical history (Hx), and Age are also included as causal factors. The DAG also includes unmeasured factors related to general CP severity, which impact baseline impairment and surgical history. The step-by-step process and rationale for this DAG are available in the Supplementary Material and an interactive version is available on dagitty (http://dagitty.net/mUCSPWo).Aim: The goal of this research was to quantify the causal effects of altered motor control and other impairments on gait, before and after single-event multi-level orthopedic surgery (SEMLS).

Methods: We evaluated the impact of SEMLS on change in Gait Deviation Index (ΔGDI) between gait analyses. We constructed our causal model with a Directed Acyclic Graph that included the assumed causal relationships between SEMLS, ΔGDI, baseline GDI (GDIpre), baseline neurologic and orthopedic impairments (Imppre), age, and surgical history. We identified the adjustment set to evaluate the causal effect of SEMLS on ΔGDI and the impact of Imppre on ΔGDI and GDIpre. We used Bayesian Additive Regression Trees (BART) and accumulated local effects to assess relative effects.

Results: We prospectively recruited a cohort of children with bilateral CP undergoing SEMLS (N = 55, 35 males, age: 10.5 ± 3.1 years) and identified a control cohort with bilateral CP who did not undergo SEMLS (N = 55, 30 males, age: 10.0 ± 3.4 years). There was a small positive causal effect of SEMLS on ΔGDI (1.70 GDI points). Altered motor control (i.e., dynamic and static motor control) and strength had strong effects on GDIpre, but minimal effects on ΔGDI. Spasticity and orthopedic impairments had minimal effects on GDIpre or ΔGDI.

Interpretation: Altered motor control did have a strong effect on GDIpre, indicating that these impairments do have a causal effect on a child’s gait pattern, but minimal effect on expected changes in GDI after SEMLS. Heterogeneity in outcomes suggests there are other factors contributing to changes in gait. Identifying these factors and employing causal methods to examine the complex relationships between impairments and movement will be required to advance our understanding and care of children with CP.

M Yamagami, KM Steele, SA Burden (2020) “Decoding Intent With Control Theory: Comparing Muscle Versus Manual Interface Performance”

Journal Article in ACM Conference on Human Factors in Computing Systems (CHI) 2020 Preceedings:

These results suggest that control theory modeling can provide a platform to successfully quantify device performance in the absence of errors arising from motor impairments

Split image of upper body of user holding rod and slider with computer screen

Photo (top and bottom) of a user using a slider (top) and muscles (bottom) to control a cursor on the screen.
(Top image) Side image of user. User rests their elbow and pinches the slider and moves the slider towards and away from their body to control the cursor.
(Bottom image) Side image of user. User is strapped to a rigid device holding a bar with hands supinated towards the ceiling, with the forearms at a 90 degree angle from the upper arms.
Electrodes are placed on the biceps and triceps and labelled. Arrows pointing up and down indicate that users move their arm up and down to control the cursor.

 

Background: Manual device interaction requires precise coordination which may be difficult for users with motor impairments. Muscle interfaces provide alternative interaction methods that may enhance performance, but have not yet been evaluated for simple (eg. mouse tracking) and complex (eg. driving) continuous tasks. Control theory enables us to probe continuous task performance by separating user input into intent and error correction to quantify how motor impairments impact device interaction

Aim:  Propose and extend an experimental and analytical method to guide future development of accessible interfaces like muscle interfaces using control theory

Method: We compared the effectiveness of a manual versus a muscle interface for eleven users without and three users with motor impairments performing continuous tasks.

Results: Both user groups preferred and performed better with the muscle versus the manual interface for the complex continuous task.

Interpretation: Results suggest muscle interfaces and algorithms that can detect and augment user intent may be especially useful for future design of interfaces for continuous tasks.

 

Momona also gave a phenomenal talk on this paper last week in the University of Washington’s ‘DUB Shorts’ series (video posted below). Nice job Momona!