CR DeVol, SR Shrivastav, VM Landrum, KF Bjornson, D Roge, CT Moritz, KM Steele (2025) “Effects of spinal stimulation and short-burst treadmill training on gait biomechanics in children with cerebral palsy”

Journal article in Gait & Posture

Children with cerebral palsy (CP) have an injury to the central nervous system around the time of birth that affects the development of the brain and spinal cord. This injury leads to changes in gait neuromechanics, including muscle activity and joint kinematics. Transcutaneous spinal cord stimulation (tSCS) is a novel neuromodulation technique that may improve movement and coordination in children with CP when paired with targeted physical therapy.

Example kinematics and muscles activity at each assessment timepoint for P03’s more-affected side. A) Sagittal-plane hip, knee, and ankle kinematics over the gait cycle. Horizontal colored lines indicate where there were significant changes in kinematics over each phase of the study based on statistical parametric mapping (p Aim: How does the combination of tSCS and short-burst interval locomotor treadmill training (SBLTT) affect individual gait neuromechanics in children with CP?

Methods: Four children with CP (4–13 years old), received 24 sessions each of SBLTT only and SBLTT with tSCS (tSCS+SBLTT). Clinical assessments of spasticity and passive range of motion (PROM), as well as biomechanical assessments of joint kinematics, musculotendon lengths, and muscle activity were recorded during overground, barefoot walking. Assessments were taken before and after each intervention, and 8-weeks later.

Results: The combination of tSCS+SBLTT led to greater increases in hip and knee extension than SBLTT only for three participants. Three children also became more plantarflexed at the ankle during stance after tSCS+SBLTT compared to SBLTT only. While tSCS+SBLTT reduced spasticity, these changes were only weakly correlated with changes in musculotendon lengths during gait or PROM, with the largest correlation between change in gastrocnemius operating musculotendon length during fast walking and gastrocnemius spasticity (R2 = 0.26) and change in plantarflexor PROM and gastrocnemius spasticity (R2 = 0.23).

Interpretation: Children with CP used a more upright, less crouched posture during gait after tSCS+SBLTT. Large reductions in spasticity after tSCS+SBLTT were only weakly correlated with changes in kinematics and PROM. Understanding the mechanisms by which tSCS may affect gait for children with CP is critical to optimize and inform the use of tSCS for clinical care.

SR Shrivastav, CR DeVol, VM Landrum, KF Bjornson, D Roge, KM Steele, CT Moritz (2024) “Transcutaneous Spinal Stimulation and Short-burst Interval Treadmill Training in Children with Cerebral Palsy: A Pilot Study”

Journal Article in IEEE Transactions on Biomedical Engineering

Non-invasive neuromodulation may be an alternative approach that can improve outcomes in CP when combined with physical therapy. Transcutaneous spinal cord stimulation (tSCS) is a novel, non-invasive neuromodulation technique that can modulate spinal and supraspinal circuits especially when implemented with physical therapy.

A) Short-burst interval locomotor treadmill training (SBLTT) with contact guard assist. B) Investigative spinal cord neuromodulation device (SpineX, Inc.) with stimulating electrodes on the T11 and L1 dorsal spinous processes and two ground electrodes on the anterior superior iliac spine (ASIS - not visible). C) Spinal stimulation waveform with 10 kHz carrier frequency. D) Protocol timeline including the assessments before and after each intervention and after 8-weeks of follow-up. tSCS = transcutaneous spinal cord stimulationAim: The purpose of this pilot study was to evaluate the effects of transcutaneous spinal cord stimulation (tSCS) and short-burst interval locomotor treadmill training (SBLTT) on spasticity and mobility in children with cerebral palsy (CP).

Methods: We employed a single-arm design with two interventions: SBLTT only, and tSCS + SBLTT, in four children with CP. Children received 24-sessions each of SBLTT only and tSCS + SBLTT. Spasticity, neuromuscular coordination, and walking function were evaluated before, immediately after, and 8- weeks following each intervention.

Results: Spasticity, measured via the Modified Ashworth Scale (MAS), reduced in four lower extremity muscles after tSCS + SBLTT (1.40 ± 0.22,) more than following SBLTT only (0.43 ± 0.39). One-minute walk test (1-MWT) distance was maintained during both interventions. tSCS + SBLTT led to improvements in peak hip and knee peak extension (4.9 ± 7.3° and 6.5 ± 7.7°), that drove increases in joint dynamic range of 4.3 ± 2.4° and 3.8 ± 8.7° at the hip and knee, respectively. Children and parents reported reduction in fatigue and improved gait outcomes after tSCS + SBLTT. Improvements in spasticity and walking function were sustained for 8-weeks after tSCS + SBLTT.

Interpretation: These preliminary results suggest that tSCS + SBLTT may improve spasticity while simultaneously maintaining neuromuscular coordination and walking function in ambulatory children with CP. This work provides preliminary evidence on the effects of tSCS and the combination of tSCS + SBLTT in children with CP.

KM Steele, MH Schwartz (2022) “Causal Effects of Motor Control on Gait Kinematics After Orthopedic Surgery in Cerebral Palsy: A Machine-Learning Approach”

Journal Article in Frontiers in Human Neuroscience

Altered motor control is common in cerebral palsy (CP). Understanding how altered motor control affects movement and treatment outcomes is important but challenging due to complex interactions with other neuromuscular impairments. While regression can be used to examine associations between impairments and movement, causal modeling provides a mathematical framework to specify assumed causal relationships, identify covariates that may introduce bias, and test model plausibility.

FIGURE 1 Directed Acyclic Graph (DAG) describing the assumed causal relationships between SEMLS (exposure) and 1GDI (outcome). The causal relationship between SEMLS and 1GDI is mediated by changes in impairments (1Imp). Baseline GDI (GDIpre) and 1GDI are related by measurement methods and other, unmeasured factors. Baseline impairment (Imppre), surgical history (Hx), and Age are also included as causal factors. The DAG also includes unmeasured factors related to general CP severity, which impact baseline impairment and surgical history. The step-by-step process and rationale for this DAG are available in the Supplementary Material and an interactive version is available on dagitty (http://dagitty.net/mUCSPWo).Aim: The goal of this research was to quantify the causal effects of altered motor control and other impairments on gait, before and after single-event multi-level orthopedic surgery (SEMLS).

Methods: We evaluated the impact of SEMLS on change in Gait Deviation Index (ΔGDI) between gait analyses. We constructed our causal model with a Directed Acyclic Graph that included the assumed causal relationships between SEMLS, ΔGDI, baseline GDI (GDIpre), baseline neurologic and orthopedic impairments (Imppre), age, and surgical history. We identified the adjustment set to evaluate the causal effect of SEMLS on ΔGDI and the impact of Imppre on ΔGDI and GDIpre. We used Bayesian Additive Regression Trees (BART) and accumulated local effects to assess relative effects.

Results: We prospectively recruited a cohort of children with bilateral CP undergoing SEMLS (N = 55, 35 males, age: 10.5 ± 3.1 years) and identified a control cohort with bilateral CP who did not undergo SEMLS (N = 55, 30 males, age: 10.0 ± 3.4 years). There was a small positive causal effect of SEMLS on ΔGDI (1.70 GDI points). Altered motor control (i.e., dynamic and static motor control) and strength had strong effects on GDIpre, but minimal effects on ΔGDI. Spasticity and orthopedic impairments had minimal effects on GDIpre or ΔGDI.

Interpretation: Altered motor control did have a strong effect on GDIpre, indicating that these impairments do have a causal effect on a child’s gait pattern, but minimal effect on expected changes in GDI after SEMLS. Heterogeneity in outcomes suggests there are other factors contributing to changes in gait. Identifying these factors and employing causal methods to examine the complex relationships between impairments and movement will be required to advance our understanding and care of children with CP.

NL Zaino, KM Steele, JM Donelan, MH Schwartz (2020) “Energy consumption does not change after selective dorsal rhizotomy in children with spastic cerebral palsy” Developmental Medicine & Child Neurology

Journal Article in Developmental Medicine & Child Neurology:

This retrospective analysis demonstrated that energy consumption is not reduced after rhizotomy when compared to matched controls with cerebral palsy.

Spasticity and net-nondimensionalized (NN) energy consumption for children with cerebral palsy (CP) who underwent a selective dorsal rhizotomy (SDR) and matched peers with CP who did not undergo SDR (control). (a) Baseline spasticity and NN energy consumption were similar between groups. Gray lines show normative values for typically developing (TD) peers from Gillette Children’s Specialty Healthcare. (b) Spasticity and NN energy consumption decreased significantly at follow-up for both groups. The SDR cohort had a significantly greater decrease in spasticity compared to the no-SDR group, but a similar decrease in NN energy consumption. Bars represent distributions for each group including outliers (*).

Aim: To determine whether energy consumption changes after selective dorsal rhizotomy (SDR) among children with cerebral palsy (CP).

Method: We retrospectively evaluated net nondimensional energy consumption during walking among 101 children with bilateral spastic CP who underwent SDR (59 males, 42 females; median age [5th centile, 95th centile] 5y 8mo [4y 2mo, 9y 4mo]) compared to a control group of children with CP who did not undergo SDR. The control group was matched by baseline age, spasticity, and energy consumption (56 males, 45 females; median age [5th centile, 95th centile] 5y 8mo [4y 1mo, 9y 6mo]). Outcomes were compared at baseline and follow‐up (SDR: mean [SD] 1y 7mo [6mo], control: 1y 8mo [8mo]).

Results: The SDR group had significantly greater decreases in spasticity compared to matched controls (–42% SDR vs –20% control, p<0.001). While both groups had a modest reduction in energy consumption between visits (–12% SDR, –7% control), there was no difference in change in energy consumption (p=0.11) or walking speed (p=0.56) between groups.

Interpretation: The SDR group did not exhibit greater reductions in energy consumption compared to controls. The SDR group had significantly greater spasticity reduction, suggesting that spasticity had minimal impact on energy consumption during walking in CP. These results support prior findings that spasticity and energy consumption decrease with age in CP. Identifying matched control groups is critical for outcomes research involving children with CP to account for developmental changes.

Nicole Zaino wins the ESMAC Best Paper award

Congratulations to Nicole Zaino for being awarded the ESMAC (European Society of Movement Analysis for Adults and Children) Best Paper Award. Nicole received this award at the 2019 ESMAC conference in Amsterdam, September 23-28, 2019 where she gave her talk: “Spasticity reduction in children with cerebral palsy is not associated with reduced energy during walking.” For more information, visit ESMAC.

Woman in formal attire standing behind a black and purple podium in front of a large presentation screen