AM Spomer, BC Conner, MH Schwartz, ZF Lerner, KM Steele (2023) “Audiovisual biofeedback amplifies plantarflexor adaptation during walking among children with cerebral palsy”

Journal Article in Journal of NeuroEngineering and Rehabilitation

Biofeedback is a promising noninvasive strategy to enhance gait training among individuals with cerebral palsy (CP). Commonly, biofeedback systems are designed to guide movement correction using audio, visual, or sensorimotor (i.e., tactile or proprioceptive) cues, each of which has demonstrated measurable success in CP.

Figure 1. Experimental Protocol. Audiovisual (AV) biofeedback on soleus activity was provided for the more-affected limb alongside an auto-adjusting target score. Sensorimotor (SM) biofeedback was provided for the more-affected limb using an untethered ankle exoskeleton designed to impart a resistive ankle torque through stance, proportional to baseline values. Participants completed three data collection visits (pre-acclimation, post-acclimation, and follow-up), during which they walked with both biofeedback systems independently and in combination. Trials were pseudo-randomized within and between visits to ensure that feedback modalities were presented to each participant in a different order and control for fatigue and learning effects. Each trial was 10 min long and separated into baseline, feedback, and washout phases. All data analysis was performed for early (strides 1–30), mid (strides 91–110), and late (strides 181–210) feedback phases and washout (strides 1–30). Mean soleus activity for individual strides (purple dots) was normalized to baseline activity. Between the pre-acclimation and post-acclimation visits, participants completed four, 20-min acclimation sessions where they received additional practice with both systems

Aim: The aim of this study is to evaluate how the modality of biofeedback may influence user response which has significant implications if systems are to be consistently adopted into clinical care.

Method: In this study, we evaluated the extent to which adolescents with CP (7M/1F; 14 [12.5,15.5] years) adapted their gait patterns during treadmill walking (6 min/modality) with audiovisual (AV), sensorimotor (SM), and combined AV + SM biofeedback before and after four acclimation sessions (20 min/session) and at a two-week follow-up. Both biofeedback systems were designed to target plantarflexor activity on the more-affected limb, as these muscles are commonly impaired in CP and impact walking function. SM biofeedback was administered using a resistive ankle exoskeleton and AV biofeedback displayed soleus activity from electromyography recordings during gait. At every visit, we measured the time-course response to each biofeedback modality to understand how the rate and magnitude of gait adaptation differed between modalities and following acclimation.

Results: Participants significantly increased soleus activity from baseline using AV + SM (42.8% [15.1, 59.6]), AV (28.5% [19.2, 58.5]), and SM (10.3% [3.2, 15.2]) biofeedback, but the rate of soleus adaptation was faster using AV + SM biofeedback than either modality alone. Further, SM-only biofeedback produced small initial increases in plantarflexor activity, but these responses were transient within and across sessions (p > 0.11). Following multi-session acclimation and at the two-week follow-up, responses to AV and AV + SM biofeedback were maintained.

Interpretation: This study demonstrated that AV biofeedback was critical to increase plantarflexor engagement during walking, but that combining AV and SM modalities further amplified the rate of gait adaptation. Beyond improving our understanding of how individuals may differentially prioritize distinct forms of afferent information, outcomes from this study may inform the design and selection of biofeedback systems for use in clinical care.

AACPDM 2023

Two people smiling and taking a selfie while standing in front of The Shirley Ryan Ability Lab sign. Mia has blonde hair. Charlotte has brown hair and is wearing glasses.

Lab members, Charlotte Caskey and Mia Hoffman attended the 2023 American Academy for Cerebral Palsy and Developmental Medicine (AACPDM) Annual Meeting in Chicago, IL on September 10-13, 2023.

Charlotte gave a poster presentation on “Short-Burst Interval Treadmill Training Increases Step Length and Stability for Children with Cerebral Palsy.”

Mia gave a podium presentation during the Early Detection and Diagnosis session on “Quantifying the Activity Levels of Toddlers with Down Syndrome Playing in a Partial Body Weight Support System.

Great work in the Windy City!

Introducing Dr. Nicole Zaino

Congratulations to Dr. Nicole Zaino on earning her Doctorate in Mechanical Engineering! Dr. Zaino’s PhD thesis dissertation was titled Walking and Rolling: Evaluation Technology to Support Multimodal Mobility for Individuals with DisabilitiesCongratulations and best of luck as you move forward training on the Elite Team at Crosscut Mountain Sports Center in para nordic sit skiing and assistive technology field.