Dr. Alyssa Spomer on “Gears of Progress” Podcast

Gears of Progress Episode 7 featured Alyssa Spomer on biofeedback tech to improve motor control ankle exoskeletons, and work as a clinical scientist at Gillette Children's Hospital.“Gears of Progress” Episode Seven featured Steele Lab Alumni, Dr. Alyssa Spomer on biofeedback tech to improve motor control ankle exoskeletons, and work as a clinical scientist at Gillette Children’s Hospital.

Gears of Progress Logo with three gears featuring assistive devices

Name: Gears of Progress

PlatformsSpotifyApple PodcastsAmazon MusicCastbox

Release frequency: bi-weekly on Fridays

Theme: Podcast about research and innovations in rehabilitation engineering and assistive technologies aimed to improve accessibility for people with disabilities. Every episode will feature engineers, medical professionals, end-users, and organizations who focus on improving the health and well-being of individuals with disabilities. We will be covering topics such as emerging tech, outcome measures, medical practice, public policy, accessibility education, and so much more!

Twitterhttps://twitter.com/GearsOfProgress

EC Kuska, KM Steele (2024) “Does crouch alter the effects of neuromuscular impairments on gait? A simulation study”

Journal Article in Journal of Biomechanics

Cerebral palsy (CP) is a neurologic injury that impacts control of movement. Individuals with CP also often develop secondary impairments like weakness and contracture. Both altered motor control and secondary impairments influence how an individual walks after neurologic injury. However, understanding the complex interactions between and relative effects of these impairments makes analyzing and improving walking capacity in CP challenging.

A sagittal-plane musculoskeletal model and neuromuscular simulation framework that tracked average nondisabled (ND) kinematics and moderate and severe crouch gait. The model contains nine degrees-of-freedom (pelvic tilt and translation, and right and left hip, knee, and ankle flexion) actuated by eight Hill-type musculotendinous units per leg. The objective function minimized deviations from tracked kinematics and the sum of muscle activations squared (a2). We perturbed each gait simulation with multi-modal neuromuscular impairments—altered control, weakness, and contracture—of varying severities. Altered control was simulated by reducing the number of fixed synergies controlling each leg, and weakness and contracture were simulated by reducing a muscle’s maximum isometric force ( ) and tendon slack length ( ), respectively. A Bayesian Additive Regression Trees (BART) model then predicted resultant a2 from the simulated neuromuscular impairments for crouch and ND gait to evaluate the relative effects of each simulated neuromuscular impairment on the muscle activations required to maintain each gait pattern.Aim: The purpose of this study was to investigate the interactions between neuromuscular impairments and gait in CP.

Methods: We used a sagittal-plane musculoskeletal model and neuromuscular control framework to simulate crouch and nondisabled gait. We perturbed each simulation by varying the number of synergies controlling each leg (altered control), and imposed weakness and contracture. A Bayesian Additive Regression Trees (BART) model was also used to parse the relative effects of each impairment on the muscle activations required for each gait pattern.

Results: By using these simulations to evaluate gait-pattern specific effects of neuromuscular impairments, we identified some advantages of crouch gait. For example, crouch tolerated 13 % and 22 % more plantarflexor weakness than nondisabled gait without and with altered control, respectively. Furthermore, BART demonstrated that plantarflexor weakness had twice the effect on total muscle activity required during nondisabled gait than crouch gait. However, crouch gait was also disadvantageous in the presence of vasti weakness: crouch gait increased the effects of vasti weakness on gait without and with altered control.

Interpretation: These simulations highlight gait-pattern specific effects and interactions between neuromuscular impairments. Utilizing computational techniques to understand these effects can elicit advantages of gait deviations, providing insight into why individuals may select their gait pattern and possible interventions to improve energetics.

NL Zaino, Z McKee, CD Caskey, KM Steele, HA Feldner (2024) “Perceptions and experiences of first mobility aid provision for young children with cerebral palsy in the United States: a mixed-methods study”

Journal Article in Disability and Rehabilitation: Assistive Technology 

This research provides insights into the lived experiences of clinicians and caregivers of young children with CP regarding the prescription, provision, use and impact of first mobility aids, specifically ankle foot orthoses and walkers/gait trainers.

Caregiver views of impact of first orthoses (n = 8) and walkers (n = 4). Proportional bar graph depicting caregiver perceptions on the impacts of their child’s ankle foot orthoses and/or walkers on various activities.Aim: The purpose of this study was to establish and understand the provision process and impacts of first mobility aids for children with cerebral palsy (CP) in the United States – specifically orthoses, walkers and gait-trainers.

Methods: We performed a mixed-methods study including surveys and semi-structured interviews of caregivers of young children with CP (n = 10) and clinicians who work with young children with CP (n = 29). We used content analysis for the surveys and inductive coding for the interviews.

Results: Four themes emerged: (1) first mobility aids have mixed impacts and use patterns, (2) there is varied caregiver education and understanding about mobility aids, (3) clinician knowledge, consistency and connection impact care and (4) numerous access barriers exist for families, and there are still opportunities for improvement across all domains.

Interpretation: This study not only provides researchers and clinicians with an understanding of the current status of the prescription and provision process in the United States, but also offers suggestions for improvements of the process and mobility aids themselves. These results have implications for future research, mobility aid, design and the provision process of first mobility aids.

Charlotte Caskey on “Gears of Progress” Podcast

Gears of Progress Episode Three featured Charlotte Caskey on spinal stimulation in children with cerebral Palsy, fancy neuroscience, and balance between clinical research and real world. Charlotte has long brown hair. She is wearing glasses and a cozy scarf.

“Gears of Progress” Episode Three featured Charlotte Caskey on spinal stimulation in children with cerebral Palsy, fancy neuroscience, and balance between clinical research and real world.

Gears of Progress Logo with three gears featuring assistive devicesName: Gears of Progress

PlatformsSpotifyApple PodcastsAmazon MusicCastbox

Release frequency: bi-weekly on Fridays

Theme: Podcast about research and innovations in rehabilitation engineering and assistive technologies aimed to improve accessibility for people with disabilities. Every episode will feature engineers, medical professionals, end-users, and organizations who focus on improving the health and well-being of individuals with disabilities. We will be covering topics such as emerging tech, outcome measures, medical practice, public policy, accessibility education, and so much more!

Twitterhttps://twitter.com/GearsOfProgress

Steele Lab presents at CREATE Research Showcase

A group of Steele Lab members posing for a photo

The Center for Research and Education on Accessible Technology and Experiences (CREATE) hosted a Research Showcase and Holiday party on December 12, 2023. CREATE’s mission is to make technology accessible and to make the world accessible through technology.

Steele Lab members, Kate, Victoria (Tori), and Charlotte presented posters at the CREATE Research Showcase to highlight design, development & research of tech to support individuals with disabilities.

Way to go, team!