Celebrating Our Research Trainees at the 2025 UW Undergraduate Research Symposium

The University of Washington Undergraduate Research Symposium is an annual, day-long celebration of undergraduate achievement in research, scholarship, and creative expression. This year, we are proud to highlight the outstanding contributions of our lab’s research trainees who shared their innovative work with the broader academic community.

Alisha Bose delivered a compelling podium presentation titled “How Does Clinical Presentation Impact Gameplay in Early Intervention?” Her research explores how different clinical profiles may influence the way children engage with therapeutic play, contributing valuable insights to the field of accessible design.

Katie Leija presented a poster on “Impact of Powered Mobility Device Seat Design on a Young Child’s Exploration,” examining how adaptive seating affects mobility and interaction in young children using powered mobility devices.

Spencer Hensley shared his work through a poster presentation titled “Effects of Mobility Aids on Muscle Activity in Kids with DS,” which investigates how different mobility aids influence muscle engagement during play in children with Down syndrome.

We are incredibly proud of Alisha, Spencer, and Katie for their dedication and creativity. Their projects reflect the core mission of the Neuromechanics & Mobility Labengineering to enhance human mobility, play, and exploration. Through their work, they are helping to advance inclusive design and accessible technology that empowers individuals of all abilities.

  • A person stands at a podium giving a presentation. Behind them, a large screen displays the title slide: “HOW DOES CLINICAL PRESENTATION IMPACT GAMEPLAY IN EARLY INTERVENTION?” by Alisha Bose.
  • A person stands next to a research poster titled “Impact of Powered Mobility Device Seat Design on a Young Child's Exploration,” featuring the University of Washington logo.
  • A person stands beside a scientific poster titled “Effects of Mobility Aids on Muscle Activity in Kids with DS.”

Neuromechanics & Mobility Lab presents at RehabWeek 2025

Members of the Neuromechanics and Mobility Lab has a busy week attending the 2025 Rehabilitation Engineering and Assistive Technology Society of North America (RESNA) Conference, held as part of RehabWeek 2025 from May 12-16 in Chicago, IL.

RehabWeek is a premier, week-long event that brings together multiple conferences in the field of rehabilitation technology. It fosters cross-disciplinary collaboration and innovation among researchers, clinicians, and industry professionals. Our lab was proud to be part of this vibrant community, with several members presenting their research and contributing to the ongoing dialogue on the future of rehabilitation science.

Two of our PhD students, Mia Hoffman and Madeleine McCreary, participated in the RESNA Student Scientific Paper Competition and presented their work during the Student Scientific Paper Platform session. Mia presented her research titled “Measuring Early Intervention Providers’ Use of a Novel Switch-Accessible Play Kit,” while Maddie shared findings from our lab’s Early Mobility & Play research in her talk, “Kicking it off: Do toddlers with disabilities activate leg muscles when driving with a joystick?”

Mia Hoffman also led a session on Play and Recreation in Assistive Technology titled “Switch It Up: From Adapted Toys to Therapeutic Gaming.”

Alexandra (Sasha) Portnova-Fahreeva presented a poster titled “Evaluating the Effects of Noninvasive Spinal Stimulation on Gait Parameters in Cerebral Palsy via Markerless Motion Capture” sharing findings from our lab’s Spinal Neuromodulation research. She also participated in the RESNA Student Design Challenge with her project, “H.A.T. – A Camera-Based Finger Range-of-Motion Hand Assessment Tool to Enhance Therapy Practices” where she and her team received honorable mention.

Katie Landwehr-Prakel presented a poster on “Cardiovascular Load of Using a Walker-Based Exoskeleton in Children with Cerebral Palsy,” and placed in the top 10 of the Fast Forward Poster Competition.

We are especially proud to share that Mia Hoffman was awarded 1st place and Madeleine McCreary received 2nd place in the Student Scientific Paper Competition. Congratulations to both for their outstanding work and well-deserved recognition.

We’re incredibly proud of our team’s contributions and accomplishments at RehabWeek 2025!

CR DeVol, SR Shrivastav, VM Landrum, KF Bjornson, D Roge, CT Moritz, KM Steele (2025) “Effects of spinal stimulation and short-burst treadmill training on gait biomechanics in children with cerebral palsy”

Journal article in Gait & Posture

Children with cerebral palsy (CP) have an injury to the central nervous system around the time of birth that affects the development of the brain and spinal cord. This injury leads to changes in gait neuromechanics, including muscle activity and joint kinematics. Transcutaneous spinal cord stimulation (tSCS) is a novel neuromodulation technique that may improve movement and coordination in children with CP when paired with targeted physical therapy.

Example kinematics and muscles activity at each assessment timepoint for P03’s more-affected side. A) Sagittal-plane hip, knee, and ankle kinematics over the gait cycle. Horizontal colored lines indicate where there were significant changes in kinematics over each phase of the study based on statistical parametric mapping (p Aim: How does the combination of tSCS and short-burst interval locomotor treadmill training (SBLTT) affect individual gait neuromechanics in children with CP?

Methods: Four children with CP (4–13 years old), received 24 sessions each of SBLTT only and SBLTT with tSCS (tSCS+SBLTT). Clinical assessments of spasticity and passive range of motion (PROM), as well as biomechanical assessments of joint kinematics, musculotendon lengths, and muscle activity were recorded during overground, barefoot walking. Assessments were taken before and after each intervention, and 8-weeks later.

Results: The combination of tSCS+SBLTT led to greater increases in hip and knee extension than SBLTT only for three participants. Three children also became more plantarflexed at the ankle during stance after tSCS+SBLTT compared to SBLTT only. While tSCS+SBLTT reduced spasticity, these changes were only weakly correlated with changes in musculotendon lengths during gait or PROM, with the largest correlation between change in gastrocnemius operating musculotendon length during fast walking and gastrocnemius spasticity (R2 = 0.26) and change in plantarflexor PROM and gastrocnemius spasticity (R2 = 0.23).

Interpretation: Children with CP used a more upright, less crouched posture during gait after tSCS+SBLTT. Large reductions in spasticity after tSCS+SBLTT were only weakly correlated with changes in kinematics and PROM. Understanding the mechanisms by which tSCS may affect gait for children with CP is critical to optimize and inform the use of tSCS for clinical care.

APTA CSM 2025 Conference Recap

Neuromechanics & Mobility Lab member, Mia Hoffman, attended the 50th Annual American Physical Therapy Association Combined Sections Meeting (APTA CSM) in Houston, TX on Feb 13-15, where thousands of PTs, PTAs, and students came together to learn, connect, and celebrate 50 years of innovation in physical therapy.

Mia, alongside IMPACT Collaboratory members Heather A. Feldner, PT, MPT, PhD and Tiffany Li, SPT, presented a workshop on “Co-Designing a Switch Accessible Digital Play Environment for Children in Partnership with Clinicians and Families“.

Three women stand together at a conference center. The women in the center is holding a bag containing the "switch kit" supplies.

KA Ingraham, NL Zaino, C Feddema, ME Hoffman, L Gijbels, A Sinclair, AN Meltzoff, PK Kuhl, HA Feldner, KM Steele (2025) “Quantifying Joystick Interactions and Movement Patterns of Toddlers With Disabilities Using Powered Mobility With an Instrumented Explorer Mini”

Journal Article in IEEE Transactions on Neural Systems and Rehabilitation Engineering

Powered mobility technology can be a powerful tool to facilitate self-initiated exploration and play for toddlers with motor disabilities. The joystick-controlled Permobil Explorer Mini is currently the only commercially available powered mobility device for children ages 1-3 years in the United States. However, many open questions persist regarding how joystick-based mobility technologies should be designed to optimally suit the developmental needs of toddlers.

The instrumented Explorer Mini measures joystick position in (x,y) coordinates and the number of wheel rotations for the left and right wheels at a sampling frequency of 100 Hz. Wheel displacement is calculated by multiplying the number of rotations by the measured wheel circumference. Representative raw data collected from the device are shown here for 100 seconds.Aim: The purpose of this study was to quantify how toddlers with motor disabilities use the Explorer Mini during free exploration and play.

Methods: For this work, we developed a custom-instrumented Explorer Mini with embedded sensors to measure joystick interactions and wheel rotations. Nine children with motor disabilities (ages 12-36 months) participated in 12 in-lab visits, and during each visit they engaged in two 15-20 minute play sessions. For each session, we calculated several quantitative outcome metrics, including the time spent using the joystick, distance traveled, and the number, duration, and complexity of joystick interactions.

Results: Every participant independently interacted with the joystick and moved the Explorer Mini during every session. Over 12 visits, participants significantly increased their distance traveled and the time spent with the joystick active. Surprisingly, we found that only 48% of joystick interactions resulted in device movement, which has important implications for learning.

Interpretation: These results can serve as a benchmark for caregivers and clinicians to understand early device use patterns. Furthermore, this knowledge can be used to inform the design of new powered mobility technologies for toddlers with disabilities or support the refinement of existing devices.