NSF Convergence Accelerator | Living Better through Rehabilitation & Assistive Technology

A second NSF Convergence Accelerator focused on increasing access and inclusion. The LIBERATE workshop is focused on Living Better through Rehabilitation & Assistive Technology.

title slide of Dr. Steele's presentation on a purple background with text Liberate 2021 NSF convergence accelerator

As an NSF Convergence Accelerator, participants will seek to identify pathways that could be  pursued by multidisciplinary teams to get solutions at least to a prototype stage in 3-5 years. The long-term goal from this workshop is to kickstart the next wave of technologies that will empower people with disabilities.

Dr. Steele will be participating and presenting some kernels of ideas for inclusion, especially highlighting recent work from CREATE.

Slides

Download PDF of slides.

Email Dr. Steele (kmsteele – at – uw – dot – edu) with questions, comments, or suggestions.

NSF Convergence Accelerator | Inclusion in the Workplace

The NSF Convergence Accelerator on Accelerating Disability Inclusion in Workplaces through Technology starts on May 20th.


Title slide of Dr. Steele's talk "Ideas for Inclusion" on a purple background.

 

The goals for this workshop are to identify pathways for technology to solve or mitigate accessibility and inclusion challenges in current and emerging workplaces. As an NSF Convergence Accelerator, participants will seek to identify pathways that could be  pursued by multidisciplinary teams to get solutions at least to a prototype stage in 3-5 years. The long-term goals from this workshop are to set in motion paradigm shifts that brings the percentage of individuals with disabilities participating in the workforce closer to the general population.

Dr. Steele will be presenting some ideas on inclusion in the workplace – from work environments to transportation to workforce development.

Slides

Download PDF of slides.

Email Dr. Steele (kmsteele – at – uw – dot – edu) with questions, comments, or suggestions.

HA Feldner, C Papazian, KM Peters, CJ Cruetzfeldt, KM Steele (2021) “Clinical Use of Surface Electromyography to Track Acute Upper Extremity Muscle Recovery after Stroke: A Descriptive Case Study of a Single Patient”

Journal Article in Applied System Innovation:

This work highlights the potential of wearable technologoies to monitor muscle activity changes during stroke recovery in acute clinical settings and their importance for motivation and understanding of progression from the survivor’s point of view: ‘I was hopeful that it would show signs of things that are occurring when I couldn’t physically feel it…if you had other scientific evidence that things were happening, even beyond their notion that it would, it gives you a lot of hope. You just have to be patient, and it’s harder to take when someone tells you, but easier to understand if someone actually shows you’.

Left image depicts arm with pads placed over muscle with right pictures depicting similar image

Aim: Describe the use of wireless sEMG sensors to examine changes in muscle activity during acute and subacute phases of stroke recovery, and understand the participant’s perceptions of sEMG monitoring.

Method: Muscle activity was tracked by five wireless sEMG sensors beginning three days post-stroke and continued through discharge from inpatient rehabilitation. Activity logs were completed each session, and a semi-structured interview occurred at the final session with three- and eight-month follow-up sessions.

Results: The longitudinal monitoring of muscle and movement recovery in the clinic and community was feasible using sEMG sensors. The participant and medical team felt monitoring was unobtrusive, interesting, and motivating for recovery, but desired greater in-session feedback to inform rehabilitation.

Interpretation: This work highlights that barriers in equipment and signal quality still exist, but capitalizing on wearable sensing technology in the clinic holds promise for enabling personalized stroke recovery.

2020 Center for Translational Muscle Research

How can we decipher human movement?

CTMR: White text on purple background, UW Center for Translational Muscle ResearchOur skeletal muscles have amazing structure. They provide elegant and efficient actuation to move and explore our worlds. But how do we understand how muscles produce movement?

Dr. Steele presents at the inaugural research symposium for the University of Washington Center for Translational Muscle Research. Her presentation shares examples for how we can use musculoskeletal simulation as a tool to connect muscle biology, dynamics, and mobility.

Slides | Transcript