Celebrating Our Research Trainees at the 2025 UW Undergraduate Research Symposium

The University of Washington Undergraduate Research Symposium is an annual, day-long celebration of undergraduate achievement in research, scholarship, and creative expression. This year, we are proud to highlight the outstanding contributions of our lab’s research trainees who shared their innovative work with the broader academic community.

Alisha Bose delivered a compelling podium presentation titled “How Does Clinical Presentation Impact Gameplay in Early Intervention?” Her research explores how different clinical profiles may influence the way children engage with therapeutic play, contributing valuable insights to the field of accessible design.

Katie Leija presented a poster on “Impact of Powered Mobility Device Seat Design on a Young Child’s Exploration,” examining how adaptive seating affects mobility and interaction in young children using powered mobility devices.

Spencer Hensley shared his work through a poster presentation titled “Effects of Mobility Aids on Muscle Activity in Kids with DS,” which investigates how different mobility aids influence muscle engagement during play in children with Down syndrome.

We are incredibly proud of Alisha, Spencer, and Katie for their dedication and creativity. Their projects reflect the core mission of the Neuromechanics & Mobility Labengineering to enhance human mobility, play, and exploration. Through their work, they are helping to advance inclusive design and accessible technology that empowers individuals of all abilities.

  • A person stands at a podium giving a presentation. Behind them, a large screen displays the title slide: “HOW DOES CLINICAL PRESENTATION IMPACT GAMEPLAY IN EARLY INTERVENTION?” by Alisha Bose.
  • A person stands next to a research poster titled “Impact of Powered Mobility Device Seat Design on a Young Child's Exploration,” featuring the University of Washington logo.
  • A person stands beside a scientific poster titled “Effects of Mobility Aids on Muscle Activity in Kids with DS.”

Neuromechanics & Mobility Lab presents at RehabWeek 2025

Members of the Neuromechanics and Mobility Lab had a busy week attending the 2025 Rehabilitation Engineering and Assistive Technology Society of North America (RESNA) Conference, held as part of RehabWeek 2025 from May 12-16 in Chicago, IL.

RehabWeek is a premier, week-long event that brings together multiple conferences in the field of rehabilitation technology. It fosters cross-disciplinary collaboration and innovation among researchers, clinicians, and industry professionals. Our lab was proud to be part of this vibrant community, with several members presenting their research and contributing to the ongoing dialogue on the future of rehabilitation science.

Two of our PhD students, Mia Hoffman and Madeleine McCreary, participated in the RESNA Student Scientific Paper Competition and presented their work during the Student Scientific Paper Platform session. Mia presented her research titled “Measuring Early Intervention Providers’ Use of a Novel Switch-Accessible Play Kit,” while Maddie shared findings from our lab’s Early Mobility & Play research in her talk, “Kicking it off: Do toddlers with disabilities activate leg muscles when driving with a joystick?”

Mia Hoffman also led a session on Play and Recreation in Assistive Technology titled “Switch It Up: From Adapted Toys to Therapeutic Gaming.”

Alexandra (Sasha) Portnova-Fahreeva presented a poster titled “Evaluating the Effects of Noninvasive Spinal Stimulation on Gait Parameters in Cerebral Palsy via Markerless Motion Capture” sharing findings from our lab’s Spinal Neuromodulation research. She also participated in the RESNA Student Design Challenge with her project, “H.A.T. – A Camera-Based Finger Range-of-Motion Hand Assessment Tool to Enhance Therapy Practices” where she and her team received honorable mention.

Katie Landwehr-Prakel presented a poster on “Cardiovascular Load of Using a Walker-Based Exoskeleton in Children with Cerebral Palsy,” and placed in the top 10 of the Fast Forward Poster Competition.

We are especially proud to share that Mia Hoffman was awarded 1st place and Madeleine McCreary received 2nd place in the Student Scientific Paper Competition. Congratulations to both for their outstanding work and well-deserved recognition.

We’re incredibly proud of our team’s contributions and accomplishments at RehabWeek 2025!

Neuromechanics & Mobility Lab Presents at NWBS 2025

Members of the Neuromechanics & Mobility Lab traveled to Vancouver, BC for the 2025 Northwest Biomechanics Symposium (NWBS) May 2-3 hosted by the University of British Columbia. The Northwest Biomechanics Symposium is a student-friendly conference and incorporates research labs from all of the Northwest, including Canada.

Ally Clarke and Madeleine McCreary gave podium presentations at the conference in Vancouver. Mia Hoffman, Alisha Bose, and Katie Landwehr-Prakel each gave a poster presentation.

A special congratulations to Ally Clarke and Madeleine McCreary for receiving the Honorable Mention Award and Best Podium Award, respectively, in the PhD category.

We are looking forward to NWBS 2026 in Bozeman, MT!

APTA CSM 2025 Conference Recap

Neuromechanics & Mobility Lab member, Mia Hoffman, attended the 50th Annual American Physical Therapy Association Combined Sections Meeting (APTA CSM) in Houston, TX on Feb 13-15, where thousands of PTs, PTAs, and students came together to learn, connect, and celebrate 50 years of innovation in physical therapy.

Mia, alongside IMPACT Collaboratory members Heather A. Feldner, PT, MPT, PhD and Tiffany Li, SPT, presented a workshop on “Co-Designing a Switch Accessible Digital Play Environment for Children in Partnership with Clinicians and Families“.

Three women stand together at a conference center. The women in the center is holding a bag containing the "switch kit" supplies.

KA Ingraham, HA Feldner, KM Steele (2024) “An Instrumented ‘Explorer Mini’ for Quantitative Analysis of Toddlers Using Powered Mobility for Exploratory, Mobile, and Digital Play”

Journal Article in the 10th IEEE RAS EMBS Intl. Conference on Biomedical Robotics and Biomechatronics (BioRob).

For toddlers with disabilities, assistive technologies can enable developmentally appropriate exploration, play, and participation, but little is known about how children interact with accessible interfaces, such as joysticks.

The instrumented explorer mini measures joystick position, wheel rotations, and bodyweight loading at 100 Hz. Representative raw data collected from the device are shown here for 100 seconds.Aim: The Permobil Explorer Mini is currently the only commercially available, FDA-cleared pediatric powered mobility device in the United States designed for children ages 12–36 months. In this paper, we present an instrumented Explorer Mini that enables us to quantitatively analyze how young children with disabilities learn to use and interact with joystick-based technology.

Methods: We discuss preliminary results from two studies conducted with two toddlers with motor disabilities using the instrumented Explorer Mini in different contexts: 1) during exploratory mobile play (i.e., driving) and 2) during interactive digital play (i.e., playing a simple computer game).

Results: In the first study, we found that, for a given 15–20 minute play session, participants drove between 11.3 and 65.6 m, and engaged with the joystick between 53 and 165 times. In the second study, we found that children could use the joystick to play a simple cause-and-effect computer game, but that they disproportionately used the ‘forward’ direction of the joystick, regardless of the direction of the displayed target.

Interpretation: The novel experimental platform, research framework, and preliminary data presented in this paper lay the foundation to study how children with disabilities learn to use and interact with joystick-based assistive technologies. This knowledge is critical to inform the design and advancement of developmentally appropriate technologies that equitably support toddlers in exploration, mobility, and play.