CR DeVol, SR Shrivastav, AM Spomer, KF Bjornson, D Roge, CT Moritz, KM Steele (2024) “Effects of interval treadmill training on spatiotemporal parameters in children with cerebral palsy: A machine learning approach”

Journal Article in Journal of Biomechanics

Quantifying individualized rehabilitation responses and optimizing therapy for each person is challenging. For interventions like treadmill training, there are multiple parameters, such as speed or incline, that can be adjusted throughout sessions.

A) Pre-post effect of SBLTT on step length for the more affected side. B) BART results quantify direct effects of SBLTT on step length. Accumulated Local Effects (ALE) plots for each input variable show the effect of that variable on step length including session number, treadmill speed (Froude number), time within session, side, and treadmill incline. The size of the data point on each ALE plot depicts the relative number of data points in each bin. C) BART model fit (R2) for each participant. D) Direct effects of each input variable on the response variable, step length, calculated from the change in the ALE plots in B).Aim: This study evaluates if causal modeling and Bayesian Additive Regression Trees (BART) can be used to accurately track the direct effects of treadmill training on gait.

Methods: We developed a Directed Acyclic Graph (DAG) to specify the assumed relationship between training input parameters and spatiotemporal outcomes during Short Burst Locomotor Treadmill Training (SBLTT), a therapy designed specifically for children with cerebral palsy (CP). We evaluated outcomes after 24 sessions of SBLTT for simulated datasets of 150 virtual participants and experimental data from four children with CP, ages 4–13 years old. Individual BART models were created from treadmill data of each step.

Results: Simulated datasets demonstrated that BART could accurately identify specified responses to training, including strong correlations for step length progression (R2 = 0.73) and plateaus (R2 = 0.87). Model fit was stronger for participants with less step-to-step variability but did not impact model accuracy. For experimental data, participants’ step lengths increased by 26 ± 13 % after 24 sessions. Using BART to control for speed or incline, we found that step length increased for three participants (direct effect: 13.5 ± 4.5 %), while one participant decreased step length (−11.6 %). SBLTT had minimal effects on step length asymmetry and step width.

Interpretation: Tools such as BART can leverage step-by-step data collected during training for researchers and clinicians to monitor progression, optimize rehabilitation protocols, and inform the causal mechanisms driving individual responses.

CMBBE 2024 Recap

Members of the Steele Lab traveled to Vancouver, BC for the 19th International Symposium on Computer Methods in Biomechanics and Biomedical Engineering (CMBBE) hosted by the University of British Columbia.

PhD candidate, Mackenzie Pitts, gave a poster presentation on “Inferring Unmeasured Inertial Data from Sparse Sensing for Treadmill Running”. Steele Lab Alumni and Post-Doctoral Research Fellow at Emory University, Michael Rosenberg, gave a podium presentation titled “Recurrent Neural Network Gait Signatures Encode Speed-Induced Changes in Post-Stroke Gait Quality.”

In addition to sharing their research at the conference, the Steele Lab enjoyed connecting with fellow biomechanics and biomedical engineering researchers as well as exploring the beautiful campus at UBC.

EC Kuska, KM Steele (2024) “Does crouch alter the effects of neuromuscular impairments on gait? A simulation study”

Journal Article in Journal of Biomechanics

Cerebral palsy (CP) is a neurologic injury that impacts control of movement. Individuals with CP also often develop secondary impairments like weakness and contracture. Both altered motor control and secondary impairments influence how an individual walks after neurologic injury. However, understanding the complex interactions between and relative effects of these impairments makes analyzing and improving walking capacity in CP challenging.

A sagittal-plane musculoskeletal model and neuromuscular simulation framework that tracked average nondisabled (ND) kinematics and moderate and severe crouch gait. The model contains nine degrees-of-freedom (pelvic tilt and translation, and right and left hip, knee, and ankle flexion) actuated by eight Hill-type musculotendinous units per leg. The objective function minimized deviations from tracked kinematics and the sum of muscle activations squared (a2). We perturbed each gait simulation with multi-modal neuromuscular impairments—altered control, weakness, and contracture—of varying severities. Altered control was simulated by reducing the number of fixed synergies controlling each leg, and weakness and contracture were simulated by reducing a muscle’s maximum isometric force ( ) and tendon slack length ( ), respectively. A Bayesian Additive Regression Trees (BART) model then predicted resultant a2 from the simulated neuromuscular impairments for crouch and ND gait to evaluate the relative effects of each simulated neuromuscular impairment on the muscle activations required to maintain each gait pattern.Aim: The purpose of this study was to investigate the interactions between neuromuscular impairments and gait in CP.

Methods: We used a sagittal-plane musculoskeletal model and neuromuscular control framework to simulate crouch and nondisabled gait. We perturbed each simulation by varying the number of synergies controlling each leg (altered control), and imposed weakness and contracture. A Bayesian Additive Regression Trees (BART) model was also used to parse the relative effects of each impairment on the muscle activations required for each gait pattern.

Results: By using these simulations to evaluate gait-pattern specific effects of neuromuscular impairments, we identified some advantages of crouch gait. For example, crouch tolerated 13 % and 22 % more plantarflexor weakness than nondisabled gait without and with altered control, respectively. Furthermore, BART demonstrated that plantarflexor weakness had twice the effect on total muscle activity required during nondisabled gait than crouch gait. However, crouch gait was also disadvantageous in the presence of vasti weakness: crouch gait increased the effects of vasti weakness on gait without and with altered control.

Interpretation: These simulations highlight gait-pattern specific effects and interactions between neuromuscular impairments. Utilizing computational techniques to understand these effects can elicit advantages of gait deviations, providing insight into why individuals may select their gait pattern and possible interventions to improve energetics.

“Gears of Progress” Podcast Launch!

Gears of Progress Episode One featuring Elijah Kuska on computational biomechanics, synergies debates, and importance of education accessibility

Lab member, Sasha Portnova, launched a new podcast on research in rehabilitation and assistive technologies. The first episode features Steele Lab Alumni, Elijah Kuska, with a conversation on computational biomechanics, synergies debates, and the importance of education accessibility.

Gears of Progress Logo with three gears featuring assistive devices

Name: Gears of Progress

Platforms: Spotify, Apple Podcasts, Amazon Music, Castbox

Podcast launch date: Dec 1

Release frequency: bi-weekly on Fridays

Theme: Podcast about research and innovations in rehabilitation engineering and assistive technologies aimed to improve accessibility for people with disabilities. Every episode will feature engineers, medical professionals, end-users, and organizations who focus on improving the health and well-being of individuals with disabilities. We will be covering topics such as emerging tech, outcome measures, medical practice, public policy, accessibility education, and so much more!

Twitterhttps://twitter.com/GearsOfProgress

ASB 2023 Recap

Charlotte is wearing a striped dress and black blazer standing in front of her poster at ASB.Four members of our lab – Kat, Elijah, Charlotte, & Mackenzie – attended ASB 2023 on August 8-11 in Knoxville, TN.

Elijah Kuska gave a podium presentation on “The effects of weakness, contracture, and altered control on walking energetics during crouch gait.”

Charlotte Caskey gave a poster presentation on “The effect of increased sensory feedback from neuromodulation and exoskeleton use on ankle co-contraction in children with cerebral palsy.”

Kat Steele co-hosted a workshop on “Writing a Successful NIH R01 Proposal.”

ASB 2024 will be hosted August 5-8, in Madison, WI.

 

 

Elijah is wearing a striped polo shirt and giving a presentation in front of a group of people at ASB.