MC Rosenberg, JL Proctor, KM Steele (2024) “Quantifying changes in individual-specific template-based representations of center-of-mass dynamics during walking with ankle exoskeletons using Hybrid-SINDy”

Journal Article in Scientific Reports

Ankle exoskeletons alter whole-body walking mechanics, energetics, and stability by altering center-of-mass (CoM) motion. Controlling the dynamics governing CoM motion is, therefore, critical for maintaining efficient and stable gait. However, how CoM dynamics change with ankle exoskeletons is unknown, and how to optimally model individual-specific CoM dynamics, especially in individuals with neurological injuries, remains a challenge.

Depictions of walking conditions, phase variables, and example template state variables. (A) Two-dimensional depictions of template model applied to human walking without and with ankle exoskeletons (left). The phase portrait (right) defined a phase variable, , used to cluster kinematically similar measurements for model fitting. Colors denote gait phases corresponding to first and second double-limb support, single-limb support, and swing of the right leg. (B) Stride-averaged global CoM position, velocity, and acceleration for an exemplary unimpaired adult in the anterior–posterior, vertical, and mediolateral directions. The three exoskeleton conditions are shown in panels (B) and (C): shoes-only (solid lines), zero-stiffness exoskeletons (K0; dashed lines), and stiff exoskeletons (KH; dotted lines). (C) Template position and velocity states used to fit the template signatures were defined by sagittal- and frontal-plane leg angles, and leg length.Aim: Evaluate individual-specific changes in CoM dynamics in unimpaired adults and one individual with post-stroke hemiparesis while walking in shoes-only and with zero-stiffness and high-stiffness passive ankle exoskeletons.

Methods: To identify optimal sets of physically interpretable mechanisms describing CoM dynamics, termed template signatures, we leveraged hybrid sparse identification of nonlinear dynamics (Hybrid-SINDy), an equation-free data-driven method for inferring sparse hybrid dynamics from a library of candidate functional forms.

Results: In unimpaired adults, Hybrid-SINDy automatically identified spring-loaded inverted pendulum-like template signatures, which did not change with exoskeletons (p > 0.16), except for small changes in leg resting length (p < 0.001). Conversely, post-stroke paretic-leg rotary stiffness mechanisms increased by 37–50% with zero-stiffness exoskeletons.

Interpretation: While unimpaired CoM dynamics appear robust to passive ankle exoskeletons, how neurological injuries alter exoskeleton impacts on CoM dynamics merits further investigation. Our findings support Hybrid-SINDy’s potential to discover mechanisms describing individual-specific CoM dynamics with assistive devices.

UW Data Science Seminar with Megan Ebers

Title slide from the UW eScience Data Science seminar that says "Mobile sensing with shallow recurrent decoder networks. Megan R. Ebers"

Steele lab member and postdoctoral scholar, Megan Ebers, was featured in the Winter 2024 UW Data Science Seminar series. You can watch her full presentation on “Mobile sensing with shallow recurrent decoder networks” linked HERE on UW eScience Institute’s YouTube channel.

Abstract: Sensing is a fundamental task for the monitoring, forecasting, and control of complex systems. In many applications, a limited number of sensors are available and must move with the dynamics, such as with wearable technology or ocean monitoring buoys. In these dynamic systems, the sensors’ time history encodes a significant amount of information that can be extracted for critical tasks. We show that by leveraging the time-history of a sparse set of sensors, we can encode global information of the measured high-dimensional system using shallow recurrent decoder networks. This paradigm has important applications for technical challenges in climate modeling, natural disaster evaluation, and personalized health monitoring; we focus especially on how this paradigm has the potential to transform the way we monitor and manage movement-related health outcomes.

Bio: Megan Ebers is a postdoctoral scholar in applied mathematics with UW’s NSF AI Institute in Dynamic Systems. In her PhD research, she developed and applied machine learning methods for dynamics systems to understand and enable human mobility. Her postdoctoral research focuses on data-driven and reduced-order methods for complex systems, so as to continue her work in human-centered research challenges, as well as to extend her research to a broader set of technical challenges, including turbulent flow modeling, natural disaster monitoring, and acoustic object detection.

Charlotte Caskey on “Gears of Progress” Podcast

Gears of Progress Episode Three featured Charlotte Caskey on spinal stimulation in children with cerebral Palsy, fancy neuroscience, and balance between clinical research and real world. Charlotte has long brown hair. She is wearing glasses and a cozy scarf.

“Gears of Progress” Episode Three featured Charlotte Caskey on spinal stimulation in children with cerebral Palsy, fancy neuroscience, and balance between clinical research and real world.

Gears of Progress Logo with three gears featuring assistive devicesName: Gears of Progress

PlatformsSpotifyApple PodcastsAmazon MusicCastbox

Release frequency: bi-weekly on Fridays

Theme: Podcast about research and innovations in rehabilitation engineering and assistive technologies aimed to improve accessibility for people with disabilities. Every episode will feature engineers, medical professionals, end-users, and organizations who focus on improving the health and well-being of individuals with disabilities. We will be covering topics such as emerging tech, outcome measures, medical practice, public policy, accessibility education, and so much more!

Twitterhttps://twitter.com/GearsOfProgress

Mia Hoffman on “Gears of Progress” Podcast

Gears of Progress Episode Two featuring Mia Hoffman on early childhood mobility, young kids as participants, and accessibility of research for people with disabilities.

“Gears of Progress” Episode Two featured Mia Hoffman on early childhood mobility, young kids as participants, and accessibility of research for people with disabilities.

Gears of Progress Logo with three gears featuring assistive devices

Name: Gears of Progress

Platforms: Spotify, Apple Podcasts, Amazon Music, Castbox

Release frequency: bi-weekly on Fridays

Theme: Podcast about research and innovations in rehabilitation engineering and assistive technologies aimed to improve accessibility for people with disabilities. Every episode will feature engineers, medical professionals, end-users, and organizations who focus on improving the health and well-being of individuals with disabilities. We will be covering topics such as emerging tech, outcome measures, medical practice, public policy, accessibility education, and so much more!

Twitterhttps://twitter.com/GearsOfProgress

Steele Lab presents at CREATE Research Showcase

A group of Steele Lab members posing for a photo

The Center for Research and Education on Accessible Technology and Experiences (CREATE) hosted a Research Showcase and Holiday party on December 12, 2023. CREATE’s mission is to make technology accessible and to make the world accessible through technology.

Steele Lab members, Kate, Victoria (Tori), and Charlotte presented posters at the CREATE Research Showcase to highlight design, development & research of tech to support individuals with disabilities.

Way to go, team!